Henry VIII of England. Did he have syphilis, and did his consequent lack of fertility lead to divorcing Katherine of Aragon?
INTRODUCTION

Treponema pallidum is a member of the Spirochaetaceae, a family of bacteria that includes the genera of Borrelia and Leptospira. The organism has man as its primary host – acute infectious lesions ensure transmission of the organism, while persistence in the host continues for many years (Norris 1988). This comfortable relationship is coupled with great difficulty in growing the organism in vitro, forcing investigators to propagate T. pallidum in mammals, a significant hindrance to research.

The disease was probably introduced into Europe by Christopher Columbus’ crew on their return from Cuba and the present day Dominican Republic, and has been characterised by premature reports of its demise since the 16th century. ‘The pox as it is at present is much less cruel and easier to cure than at the time it first appeared; it is clearly becoming milder... to such an extent that it looks as if it will disappear in due course’ (Quetel 1986). Similarly, in the 20th century, particularly after the introduction of penicillin, articles appeared with such optimistic titles as ‘The decline of neurosyphilis’ (Heathfield 1976). However, in the last decade there has been a 50-fold increase in syphilis in Eastern Europe (Tichonova et al. 1997), and in the United States epidemics continue to occur in a 7–10 years cycle. Geographically, the vast majority of new cases arise in the developing world, whereas as many as 10% of the population are infected (Gerbase et al. 1998).

Nowadays, neurosyphilis is an uncommon disease in developed countries, but the impact of the disease earlier this century must have been remarkable. About 11% of the patients admitted to the National Hospital for Nervous
Diseases in London between 1909 and 1925 had neurosyphilis, a higher proportion than patients with multiple sclerosis (Wilson 1940). The number affected has varied widely in the 20th century, from as much as 26% of the adult male population having primary syphilis in Macon county, Alabama, to as little as 114 cases of neurosyphilis in the whole of England and Wales in 1974 (Lancet 1977) – seven times that number died of just tabes dorsalis in the United Kingdom in 1932 (Wilson 1940).

PATHOPHYSIOLOGY
Following primary (Fig. 1) and secondary infection (Fig. 2), partial immunity to syphilis develops, but not enough to eradicate T. pallidum, resulting in persistent latent infection in some patients when other organs become involved, predominantly the heart and nervous system. Invasion of the nervous system occurs during the first few weeks or months of infection, with cerebrospinal fluid (CSF) abnormalities in up to 40% of patients at the secondary stage (Lukehart & Holmes 1998). The infection has many similarities to other forms of chronic meningitis – a ventricular component, often with hydrocephalus, and a leptomeningeal component with associated vascular involvement. What is remarkable is the degree of parenchymal infiltration by the organism and the penchant for the disease to affect blood vessels.

Primary syphilis is characterised by chancres (Fig. 1), which are less obvious if they involve the vagina, and so the patient may not be aware she has the disease. The lesions are not necessarily restricted to the genital regions or mucous membranes, hence the South African colloquialism – ‘bioscope finger’. Primary syphilis is a self-limiting illness, the chancre heals several weeks after it appears. Secondary syphilis may follow, weeks to months later, and is characterised by a generalised rash (Fig. 2), lesions of moist areas (condyloma lata) and generalised lymphadenopathy. Acute meningitis may be a manifestation of secondary syphilis.

CLASSIFICATION OF NEUROSYPHILIS
Many of the terms associated with the manifestations of syphilitic chronic meningitis and encephalitis are not well defined. For example, in Harrison’s textbook of medicine (Lukehart & Holmes 1998), latent syphilis is said to be a condition where the clinical examination is normal but with ‘a positive specific treponemal antibody test for syphilis together with a normal CSF examination’. This differs from the ‘Medical Progress’ section of the New England Journal of Medicine, where it is said that the CSF can be abnormal (Hook & Marra 1992). A further problem arises in distinguishing early from late latent syphilis, where periods of 4 years (Lowhagen 1990), 2 years (Young 1992) or just 1 year (Lukehart & Holmes 1998)
from initial infection have been suggested as cut-offs between the early and late stages. Other definitions rely on whether a lumbar puncture was performed in order to separate late-latent syphilis (no lumbar puncture) from asymptomatic neurosyphilis (lumbar puncture) (Wiesel et al. 1985). The consequences of these difficulties with classification lie in trying to determine which patients should be treated, and with what. Not surprisingly, recommended treatments for early and late latent syphilis, and neurosyphilis, differ significantly from one another.

Neurosyphilis has traditionally been divided into four main groups: syphilitic meningitis, meningo-vascular syphilis, general paresis of the insane (GPI) and tabes dorsalis. Reviews have suggested that these occur in a sequential fashion. But it is not clear where this notion comes from. Adams (1997) reproduces a figure that was initially printed in the monograph he published with Merritt & Solomon in 1946. The figure is unreferenced and does not appear to be based on the work presented in the monograph. Simon, in a review published in 1985, provides a similar figure outlining the stages of neurosyphilis (Table 1). However, the sources are probably not very reliable - his information for vascular disease came from a textbook published by Gowers in 1888; those for GPI from Wilson's textbook published in 1940 (Wilson 1940), and for tabes from Merritt and Adams' monograph (1946). Lukehart's figures (Table 1) are unreferenced, and Hook's figure is referenced to Simon (1985) and to Merritt et al. (1946). Foster's figures, in the Oxford Textbook of Medicine (Foster 1996), are unreferenced, as are those in the 8th edition of Brain (Walton 1977). Combining the figures from these various sources, the quoted ranges for the time of onset of these various clinical syndromes from primary infection are: meningo-vascular, months–12 years; GPI, 5–20 years; and tabes, 8–30 years. It is evident there is substantial overlap, and that GPI and tabes need not necessarily present as long as decades after the initial infection.

A study by Wolters comparing pre- and post-antibiotic era neurosyphilis did not show any differences in age between ‘early’ (meningitis, vasculitis, spinal meningo-vascularitis) and ‘late’ neurosyphilis (tabes, dementia and taboparesis) (Wolters 1987). It is likely that age correlates with duration of illness, and it may be that age is a more accurate reflection of disease duration than the estimate of duration derived from just patient recall of their primary or secondary infection.

The bottom line is that the available information is rather limited and so rigid expectations of neurosyphilis behaving in a predictable fashion are likely to be wrong. The practical implication is that patients may present with ‘late’ syphilitic syndromes relatively early in the course of their illness.

Table 1 Time from infection to onset of neurosyphilis suggested by various authorities

<table>
<thead>
<tr>
<th>Author</th>
<th>Meningitis</th>
<th>Vascular</th>
<th>General Paresis</th>
<th>Tabes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon (1985)</td>
<td>Months</td>
<td>1 year</td>
<td>5–15 years</td>
<td>15–20 years</td>
</tr>
<tr>
<td>Lukehart & Holmes (1998)</td>
<td>Months</td>
<td>7 years</td>
<td>20 years</td>
<td>25–30 years</td>
</tr>
<tr>
<td>Hook* & Marra (1992)</td>
<td>Months</td>
<td>4–7 years</td>
<td>10–15 years</td>
<td>15–25 years</td>
</tr>
<tr>
<td>Foster (1996)</td>
<td></td>
<td>Within 12 years</td>
<td>15–20 years</td>
<td>10–25 years</td>
</tr>
<tr>
<td>Walton (1977)</td>
<td></td>
<td>Months-5 years</td>
<td></td>
<td>8–12 years</td>
</tr>
</tbody>
</table>

*Numerical values derived from figures.
Syphilitic meningitis

In 1917, Wilson described syphilitic meningitis as an acute or subacute onset of headache, nausea and vomiting, with neck stiffness (Wilson & Grey 1917). A series of cases from 1935 (Simon et al. 1935), in which the authors noted that the disorder was rare, described two distinct groups of patients. Only one group, termed ‘acute syphilitic hydrocephalus’, had typical features of meningitis, often with papilloedema. One-quarter of the patients had negative Wasserman tests, and possibly may have only had viral meningitis (Simon 1985). None of these cases had cranial nerve palsies, as opposed to the second group termed ‘acute syphilitic meningitis, basilar type’ (Merritt & Moore 1935). This group of 34 cases had a period from initial infection to onset of symptoms of 2 months to 20 years: 54% developed symptoms within 1 year of initial infection, much less than in the acute meningitis group, where the corresponding figure was 95%. Representative cases include:

- a 30-year-old female with a primary lesion 2 years previously who developed a IIIrd cranial nerve palsy and subsequently optic atrophy;
- a 34-year-old male with a primary lesion 4 years previously who developed generalised pains and a VIIth cranial nerve palsy, and on examination also had palsies of the IXth and Xth nerves;
- a 56-year-old male with a primary lesion 20 years previously who developed Argyll-Robertson pupils, and Vth and VIIth nerve palsies.

It is apparent that:

- The ‘acute meningitis’ of neurosyphilis is characterised by headache, neck stiffness, nausea and vomiting, and may be associated with the rash of secondary syphilis.
- ‘Basilar type’ meningitis is not identical to acute syphilitic meningitis.
- Cranial nerve VII and VIII palsies are most commonly found in ‘basilar type’ syphilitic meningitis, which is a more chronic condition likely to be associated with meningovascular syphilis, rather than with acute syphilitic meningitis. The MR scans of typical patients with ‘basilar type’ syphilitic meningitis are shown in Figs 3–5. The meningeal enhancement, evident midbrain ischaemia and abnormality of the vertebral artery are all compatible with meningovascular syphilis.

How does neurosyphilis present?

In their 1946 monograph, Merritt et al. grouped patients with neurosyphilis into the following categories: 45% tabes, 18% GPI, 4% taboparesis, 15% vascular, 9% meningeal, 1% 8th nerve, 3% optic neuritis, 3% spinal cord and 1% miscellaneous (Merritt et al. 1946). Tabes was the most common group, more than twice as common as GPI, but this could partly have been due to ascertainment bias, as patients with largely psychiatric problems were under-represented. It should be noted that combining the groups of meningeal and vascular syphilis amounts to about one-quarter of the total, indicating that meningo-vascular syphilis was not rare, despite recent suggestions to the contrary (Burke & Schaberg 1985; Musher 1991). Anecdotal evidence suggests that the presentations that were once common and have diminished with time are gummata and tabes dorsalis, most probably related to the introduction of arsenicals and penicillin (Wilson 1940).

Figure 3 Enhancement of the third cranial nerve (arrowed) shown on T1-MR scanning in a patient with meningo-vascular neurosyphilis.
Al Capone – the terror of Chicago – died of neurosyphilis at the age of 48 having been in Alcatraz for tax evasion.
Neuropsychiatric presentations

There is a wide range of psychiatric presentations with no particular ‘core syndrome’. All these presentations are synonymous with GPI. Clinical features are often an agitated delirium, frequently with psychosis and prominent paranoid ideation and hallucinations, both auditory and verbal, and with extreme motor restlessness. Common symptoms include personality change, memory impairment and hostility (Roberts & Emsley 1992). Wilson (1940) writes of ‘an insidious onset with slight defect of memory and of the reasoning and critical faculties, minor peculiarities of conduct, irritability’. With treatment, the delirium and psychosis often improve, exposing a global dementia, with the accent on memory impairment and disrupted frontal lobe function, and with prominent apathy and aggression, referred to as a ‘fronto-temporal encephalitis’ (Adams 1997). Physical examination typically reveals prominent primitive reflexes with hyperreflexia. Argyll Robertson pupils are by no means an inevitable accompaniment. As Wilson noted, the Argyll Robertson pupil ‘is neither constant nor pathognomonic’. Syphilitic encephalitis is typically associated with cerebral atrophy and ventricular dilatation in proportion to the degree of atrophy (Fig. 6).

Stroke

Large vessel ischaemic stroke due to neurosyphilis, most commonly involving the middle cerebral artery, is an occasional cause of stroke in young and middle aged people (Fig. 7). Interpretation of the CSF may be hampered by the usual pleocytosis and raised protein associated with any large infarct. Multiple infarcts are not uncommon, and occasionally patients with neurosyphilis present with vascular dementia, with imaging features compatible with a subacute arteriosclerotic encephalopathy – presumably diagnosed as GPI before the era of neuroimaging. Reports of parkinsonism and progressive supranuclear palsy are likely to be due to blood vessel involvement (Murialdo et al. 2000).
Encephalopathy with seizures.
Seizures vary in type, from secondarily generalised tonic-clonic or focal motor seizures with clouded consciousness, to typical complex partial seizures of frontal or temporal lobe origin. There is usually significant impairment of mental status, frequently coupled with recurrent seizures bordering on status epilepticus. Treatment of the seizures may be difficult, particularly in the acute phase.

Cranial nerve involvement
Isolated cranial nerve involvement can occur, or more rarely is associated with brainstem syndromes (see syphilitic meningitis above).

Spinal cord lesions
Acute or subacute myelopathy occurs, sometimes with a picture of spinal shock, but more commonly with the features of a spastic paraparesis of subacute or even chronic onset, perhaps with a partial Brown–Sequard syndrome. The thoraco-lumbar region is the most commonly affected.

Tabes dorsalis is still occasionally seen in its typical form. The classical quartet of features are lightning pains, ataxia, Argyll Robertson pupil and loss of deep tendon reflexes. Optic atrophy and Charcot joints are also found. Sphincter disturbance is characterised most typically by lower motor neuron bladder symptoms, and impotence.

Argyll Robertson pupils are not specific to tabes. The differential includes that of a light–near dissociated pupil - chronic alcoholism and diabetes. Probably, if the pupil is small and irregular, it is more specific for neurosyphilis, but the controversy over whether the pupil size is normal or small is unresolved (Loewenfeld 1999). Similarly, absent reflexes are commonly found in many chronic meningitides, not necessarily due to damage to the posterior columns, but related to arachnoiditis. Severe anterior cerebellar vermal syndromes associated with alcohol abuse may sometimes be difficult to distinguish from tabes.

Peripheral nervous system
Involvement of the peripheral nervous system is largely limited to spinal root damage secondary to arachnoiditis.

The effect of the antibiotic era on neurosyphilis
In 1968, an article appeared entitled ‘Changing clinical picture of neurosyphilis: report of seven unusual cases’ (Joffe et al. 1968). Of the seven, four had syphilis syndromes that on review seemed rather classical, two probably had cervical spondylosis and one had hemifacial spasm, painless ulcers and a normal CSF. The next series published was of 141 patients, of whom 43% were asymptomatic (Hooshmand et al. 1972). The major diagnostic categories were seizures, ophthalmic symptoms and stroke, all compatible with meningovascular syphilis. The small number of patients with GPI apparently occurred because there were no psychiatric services at the institution where the study was done. Nevertheless, the authors commented that ‘Neurosyphilis, at the present time, presents itself in a most atypical fashion’. A contemporary study from South Africa reported that ‘the
There is no gold standard for the diagnosis of neurosyphilis and so statements concerning the sensitivity and specificity of the tests are likely to be inaccurate. Overall, the majority of patients with neurosyphilis present with subtle clinical signs and with weakly positive or even negative serology (Joyce & Molteno 1978). This report was strongly biased toward ophthalmological cases and the inclusion criteria were likely to be inaccurate. Subsequently, an editorial in the BMJ entitled ‘Modified neurosyphilis’ suggested that atypical neurosyphilis may be common (British Medical Journal 1978).

In contrast, a study from the United Kingdom reported that ‘atypical presentations were not observed’, despite 10 out of 17 cases having received antibiotic treatment previously (Luxon 1980). Wolters compared 216 cases from a 15-year period from 1970 with a larger group in the pre-antibiotic era (Wolters 1987). A decline in tabes dorsalis was noted, but no significant differences were seen in the other syndromes. 23 cases from a 5-year period were reported from Denmark with syndromes typical of GPI and meningo-vascular syphilis (Nordenbo & Sorensen 1981).

All these reports were rather small, they were retrospective, and came from various populations - general hospital, venereal disease clinic, neurology service, etc. - and used variable diagnostic criteria for the diagnosis of neurosyphilis. Given the lack of a gold standard, and the lack of specificity of the tests (see below), proving that neurosyphilis is causal in possibly mildly affected cases is extremely difficult, and lends itself to a circular argument. However, there seems little doubt that following the introduction of penicillin, and with the subsequent reduction in primary and secondary syphilis, neurosyphilis syndromes have become rare. But the evidence for neurosyphilis presenting atypically is poor. However, there at least appears to be general agreement that one manifestation of neurosyphilis – tabes dorsalis – has become much less common than it was in the pre-antibiotic era (Nordenbo & Sorensen 1981; Burke & Schaberg 1985; Wolters 1987).

PATHOLOGY

As with tuberculosis of the nervous system, neurosyphilis is characterised by a predominantly chronic inflammatory cell infiltrate of the leptomeninges and superficial parenchyma (meningo-encephalitis). In addition, there is another prominent obliterative vasculitis (Heubner’s arteritis), which is not specific to neurosyphilis. Leptomeningeal fibrosis and consequent CSF obstruction is another non-specific sequel, common in any granulomatous inflammatory process. Unlike TB, in neurosyphilis there is typically no evidence of an exudative necrosis within the subarachnoid space and there tends to be a much less obtrusive microvascular proliferative response, the latter being a component of granulation tissue. Although reported in the pre-antibiotic era, it is rare to find extensive or discrete granuloma formation in neurosyphilis (Greenfield & Stern 1932).

Features apparently unique to neurosyphilis include persistence of organisms within the cortical parenchyma with ongoing neurocytopathic effects, and atrophy of the dorsal roots and ganglia with dorsal column degeneration, of unknown pathogenesis.

On imaging, the microvascular proliferation intrinsic to granulomatous inflammation is assumed to be the basis of the meningeal enhancement and is non-specific - it can be seen in other granulomatous inflammatory meningitides. Discrete granuloma formation with ring-form or peripheral enhancement and T2 hypointense (non-enhancing) contents is the hallmark of gummatous necrosis (Fig. 8). This is distinct from caseous or liquefactive necrosis, where lesions have T2 iso- or hyperintense contents (Fig. 9). However, gummatous necrosis is common to both TB and neurosyphilis, currently being much more prevalent in the former, and neither size nor location can provide any useful distinction between the two conditions.
There is no gold standard for the diagnosis of neurosyphilis and so statements concerning the sensitivity and specificity of the tests are likely to be inaccurate, with most references using the circular argument of assigning affectedness on the basis of clinical status and then determining sensitivity and specificity of the tests. It is unlikely that performing multiple serological tests will help. Also, if tests are used indiscriminately in ‘neurology’ patients as ‘a screening test’ for neurosyphilis, the false positive rate will be high, as is always the case when tests of less than 100% specificity are applied to a population where the prevalence of the disease of interest is low. The decision to use screening tests, whether it be for primary syphilis, or for neurosyphilis, depends on the likely prevalence of the condition, available resources and the likelihood of epidemics developing. Thus, if the prevalence is very low, statements such as ‘the continued use of screening tests for syphilis on CSF from unselected patients in whom there is no clinical suspicion of syphilis seems hard to justify’ (Lancet 1977) are likely to be correct. However, in a region of high prevalence, the opposite may hold true. In a series of 21 cases of neurosyphilis detected by screening tests in South Africa, no referring doctor had considered the diagnosis, and it was only twice considered by specialist psychiatrists (Roberts & Emsley 1992).

Figure 8 Cerebellar mass, isointense on T1-weighted imaging (marked rim enhancement with gadolinium) and hypointense on the T2-weighted image, typical of a gumma.

Figure 9 Multiple tuberculomas, hypointense on T1-weighted imaging (with marked rim enhancement with gadolinium). On the T2-weighted image, there is obvious hyperintensity, compatible with caseous/liquefactive necrosis.
Syphilitic infection produces two types of antibodies: non-specific reaginic antibody and specific antitreponemal antibody, measured by non-treponemal and treponemal tests, respectively. The VDRL (Venereral Disease Research Laboratory) and RPR (Rapid Plasma Reagin) tests are non-specific, while the FTA-ABS (fluorescent treponemal antibody absorption) and TPHA (T. Pallidum haemagglutination) tests are both specific for treponemal antibody.

Investigation of serum

Given its high sensitivity (Deacon et al. 1966), it is likely that a negative FTA test rules out neurosyphilis (Simon 1985). The FTA test is sensitive in the detection of primary syphilis, but also remains positive for many years in late or treated syphilis (Sparling 1971), with a sensitivity close to 100% (Deacon et al. 1966). Non-treponemal tests have a tendency to become negative with advancing age (Rockwell et al. 1964) and the sensitivity of the VDRL in serum for late syphilis is only about 70% (Larsen et al. 1981).

Investigation of CSF

The following tenets are probably true, although they have not been subjected to rigorous testing:

- A positive VDRL is very specific, but not very sensitive, in that it is negative in about a quarter of cases of patients with neurosyphilis (Hart 1986). Borderline VDRLs are common in areas of low disease prevalence and where the test is ordered as a routine (Dans et al. 1986).
- A positive FTA is highly sensitive, but not specific (Dans et al. 1986). The FTA is useful in that a negative result is highly likely to exclude neurosyphilis (CDC 2002). Similar comments can be applied to the TPHA (Simon 1985; Lowhagen 1990). There has previously been concern about the diagnostic utility of the FTA, particularly in the United States (Jaffe et al. 1978). The CSF-FTA is useful in that, because the CSF-VDRL has only moderate sensitivity, the CSF-FTA may be the only serological marker of neurosyphilis. However, utility is related to prevalence of the condition in the population examined.
- The prozone effect occurs with the VDRL test, which can be falsely negative in either undiluted serum or CSF. This is because agglutination is inhibited by excess antibody, but the phenomenon does not occur if the sample is diluted (Spangler et al. 1964).

DIAGNOSIS

Diagnosis rests on three pillars: the clinical syndrome; positive serology, usually in both serum and CSF; and markers of activity in spinal fluid. Thus, one definition would be:

A combination of a compatible clinical syndrome with:
- positive CSF VDRL or
- positive CSF FTA with:
 - abnormal CSF cell count (polymorphonuclear leucocytes and/or lymphocytes > 5/mL), or
 - CSF protein > 0.45 g/L, or
 - CSF IgG index > 0.6. (Roberts & Emsley 1992; Russouw et al. 1994)

Markers of activity are frequently held to be CSF protein and cell count, but it should be noted that neither need be particularly elevated, presumably reflecting the extremely indolent nature of the condition. Occasionally cell counts are normal (Dewhurst 1969). The IgG index is frequently remarkably elevated, and is a useful and easy test to perform (Dewhurst 1969). In particular, the dissociation between a relatively low cell count and a very raised IgG index may contribute to greater diagnostic certainty in neurosyphilis.

Given the inevitable diagnostic difficulties, complete diagnostic certainty in neurosyphilis is often unattainable, and the decision of which patient to treat, and how to treat, inevitably varies from one physician to another. This reflects the inherent problems of the special investigations used for identifying neurosyphilis, coupled with reasonable concern about a potentially treatable condition that will progress without appropriate therapy.

FOLLOW-UP – WHEN IS THE DISEASE CURED?

Another great uncertainty is to do with follow-up and, in particular, when and how often lumbar punctures should be repeated. Recommendations have been made for rechecking the CSF at 6 weeks, 3 and 6 months (Hart 1986). The dictum of Dattner (1951) that the cell count should revert to normal within 6 months after treatment is often repeated. Given that CSF markers of activity are often not significantly raised when the diagnosis is first made, the determination of whether they have fallen appropriately is difficult. CSF protein takes longer to normalize than the cell count. In addition, serological markers such as the FTA and TPHA may remain positive for a prolonged...
period after treatment (Felman & Nikitas 1980; Luger et al. 1981). A reasonably good study from 1991 of 1090 patients, reported that in primary and secondary syphilis, the higher the titre, the lower the likelihood of reversion of RPR titres to normal (Romanowski et al. 1983). The rate of decline was also influenced by the stage of the disease, being slower in latent syphilis, where after 2.4 MU of benzathine penicillin, only 13% of early latent syphilis had seroreverted at one year (Romanowski et al. 1983). Another study using the VDRL, reported that 42% of secondary syphilis seroreversed at 1 year (Schroeter et al. 1972).

In practice, the clinical response may be the best method of determining response to treatment. Clearly, if the VDRL is not a sensitive marker, it will not be a useful way to follow progression in many cases. Of note, two-fold changes in titre are commonly due to technical factors (Sparling 1971) and, in general, the VDRL titre in CSF tends to be low (Graman et al. 1987).

Current Centre for Disease Control (CDC) guidelines are that if the cell count has not decreased after 6 months, or if the CSF is not normal after 2 years, re-treatment should be considered (CDC 2002).

TREATMENT

No adequate comparative trials have been conducted to help the clinician in deciding what the amount or duration of treatment should be. Treatment guidelines as outlined by the CDC are available at http://www.cdc.gov/std/treatment/2TG.htm#Syphilis (see Box). Treatment may also depend on the patient – those who are psychotic and very agitated may not be able to be given intravenous medication.

PROGNOSIS

In general, there is reasonable expectation that the stroke-like syndromes of neurosyphilis carry the same prognosis as any other stroke, noting that in neurosyphilis typical strokes often involve relatively large territories in patients in their third to fifth decades. The underlying cause of stroke can be treated, and cure of the neurosyphilis is to be expected. In contrast, the encephalitis associated with dementia may show significant and permanent neurological sequelae. Acute features such as delirium and florid hallucinations should improve, but cognitive impairment will frequently persist, despite cure of the illness as judged by microbiological and serological testing.

THE INTERACTION BETWEEN HUMAN IMMUNODEFICIENCY VIRUS AND NEUROSYPHILIS

Patients acquiring syphilis are also at risk of becoming HIV-positive, as are those who have a history of intravenous drug abuse (Hutchinson et al. 1991).

An editorial in the New England Journal of Medicine in 1987 ended with the statement that ‘in patients with HIV infection, syphilis ... follows a malignant and protracted course’ (Tramont 1987). The author referred to treatment failure of syphilis in HIV-infected patients and called for higher doses, ‘maintenance therapy’, and also raised concerns about the possibility that antibody testing for syphilis in AIDS was inaccurate (Tramont 1987). A further editorial in 1994 (Musher & Baughn 1994) referred to atypical forms of neurosyphilis associated with HIV infection ‘unlike typical tertiary neurosyphilis’ and characterised by acute meningitis, cranial nerve palsies or stroke. It also pointed out that treatment may be ineffective for this form, which may also develop more rapidly.

There are a number of issues here:

- Is HIV-associated neurosyphilis atypical in its clinical presentation? Most reports of patients with both HIV and syphilis have referred to patients with acute meningeal syphilis, stroke, GPI or ophthalmic syphilis (Johns et al. 1987; Katz et al. 1993). But these are all typical syndromes of syphilis, as described in the pre-antibiotic era (Merritt & Moore 1935; Merritt et al. 1946).
- Does HIV-associated neurosyphilis develop at a more rapid rate (Berry et al. 1987; Johns et al. 1987; Katz & Berger 1989; Musher 1990)? There is currently no evidence to answer this.
question. The supposition may be based on faulty understanding of the natural history of neurosyphilis in the pre-antibiotic era, with one editorial stating that 'a 4-year course of illness was essentially unknown' in the pre-HIV era, which is incorrect (Musher & Baughn 1994). There is no difference in the frequency of CNS invasion in patients with and without HIV infection as determined by rabbit inoculation, although numbers were small and confidence intervals wide (Lukehart et al. 1988).

- Are there treatment failures specifically associated with HIV in neurosyphilis (Lukehart et al. 1988; Gordon et al. 1994; Berry et al. 1987)? Treatment failure is not uncommon in 'ordinary' neurosyphilis (Schroeter et al. 1972; Whiteside 1989). In particular, the later the stage and the higher the titre, the lower the likelihood of a rapid response to therapy. In one study on treatment failure in patients with HIV and neurosyphilis, PCR failed to detect T. pallidum after treatment (Gordon et al. 1994). There are few studies with only a small numbers of patients and most show a typical response to treatment, despite claims to the contrary (John s et al. 1987; Lukehart et al. 1988; Dowell et al. 1992; Gordon et al. 1994). For example, in a study published in 1994, a conclusion was drawn that the standard neurosyphilis regimen was not consistently effective in HIV. There were only 11 patients, and in the seven cases with 6-month follow-up, mean CSF cell count fell from 21 (range 4–70) to 7 (range 0–20) and there was neurological improvement in 91% of patients (Gordon et al. 1994).

- Is the sensitivity and specificity of the serological tests different in HIV-associated neurosyphilis? Comparing serology in different groups, HIV-positive patients were found to have higher titres in secondary syphilis in one study (Hutchinson et al. 1991), and in primary syphilis in another (Gourevitch et al. 1993).

All the studies typically involved small numbers of patients, and frequently included in their cohort patients who had secondary syphilis with rash complicated by uveitis or acute meningitis (Musher 1991; Katz et al. 1993; Gordon et al. 1994). VDRL titres were typically very high (median of 512 in one study; Gordon et al. 1994), which probably reflected the acute nature of the illness associated with secondary syphilis (Katz et al. 1993).

CONCLUSIONS

- The earliest potential neurological manifestation of syphilis is the meningitis associated with secondary syphilis.
- The most common presentation of neurosyphilis is dementia.
- Tabes dorsalis is now rare.
- Neurosyphilis may cause ischaemic stroke in either brain or spinal cord.
- Imaging typically shows generalised cerebral atrophy or stroke lesions, sometimes with meningeal involvement.
- Normal serum FTA rules out neurosyphilis.
- CSF VDRL is highly specific but not very sensitive.
- CSF FTA is very sensitive but has a high false positive rate.
- Neurosyphilis causes a very chronic meningitis and the CSF cell count may be normal.
- Screening for syphilis in populations with low prevalence is likely to yield many false positive cases.

ACKNOWLEDGEMENTS

The help rendered by Professor Richard Hewlett to the Neuropathology section and the MRI images is gratefully acknowledged. This article was refereed by David Hilton Jones, Oxford

REFERENCES

Neurosyphilis

Jonathan Carr

Pract Neurol 2003 3: 328-341

Updated information and services can be found at:
http://pn.bmj.com/content/3/6/328

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/