Skip to main content

Advertisement

Log in

Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA)

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Regulation of iron metabolism is crucial: both iron deficiency and iron overload can cause disease. In recent years, our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. These are characterized by excessive iron deposition in the brain, mainly the basal ganglia. Pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2) are the core syndromes, but several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). These conditions show a wide clinical and pathological spectrum, with clinical overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies, and neuronal ceroid lipofuscinosis. Lewy body pathology was confirmed in some clinical subtypes (C19orf12-associated neurodegeneration and PLAN). Research aims at disentangling the various NBIA genes and their related pathways to move towards pathogenesis-targeted therapies. Until then treatment remains symptomatic. Here we will introduce the group of NBIA syndromes and review the main clinical features and investigational findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aggarwal A, Schneider SA, Houlden H et al (2010) Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov Disord 25:1424–1431

    Article  PubMed  Google Scholar 

  • Awasthi R, Gupta RK, Trivedi R et al (2010) Diffusion tensor MR imaging in children with pantothenate kinase-associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol 31:442–447

    Article  PubMed  CAS  Google Scholar 

  • Barbeito AG, Garringer HJ, Baraibar MA et al (2009) Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. J Neurochem 109:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Behrens MI, Bruggemann N, Chana P et al (2010) Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord 25:1929–1937

    Article  PubMed  Google Scholar 

  • Bras J, Singleton A, Cookson MR et al (2008) Potential role of ceramide metabolism in Lewy body disease. Eur J Biochem (FEBS) 275:5767–5773

    CAS  Google Scholar 

  • Bras J, Verloes A, Schneider SA et al (2012) Mutation of the Parkinsonism Gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet 21(12):2646–2650

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol 67:1357–1363

    Article  PubMed  Google Scholar 

  • Brunetti D, Dusi S, Morbin M et al. (2012) Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet (epub ahead of print)

  • Campanella A, Privitera D, Guaraldo M et al (2012) Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Hum Mol Genet 21:4049–4059

    Article  PubMed  CAS  Google Scholar 

  • Carlier G, Dubru JM (1979) Familial juvenile Parkinsonism. Acta Psychiatr Belg 32:123–127

    CAS  Google Scholar 

  • Castelnau P, Cif L, Valente EM et al (2005) Pallidal stimulation improves pantothenate kinase-associated neurodegeneration. Ann Neurol 57:738–741

    Article  PubMed  Google Scholar 

  • Catoire H et al (2011) Restless legs syndrome-associated MEIS1 risk variant influences iron homeostasis. Ann Neurol 70:170–175

    Article  PubMed  Google Scholar 

  • Chiapparini L, Savoiardo M, D’Arrigo S et al (2011) The “eye-of-the-tiger” sign may be absent in the early stages of classic pantothenate kinase associated neurodegeneration. Neuropediatrics. 42:159–162

    Article  PubMed  CAS  Google Scholar 

  • Chien HF, Bonifati V, Barbosa ER (2011) ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord 26(7):1364–1365

    Article  PubMed  Google Scholar 

  • Chinnery PF (1993) Neuroferritinopathy. In: Pagon RA, Bird TD, Dolan CR, Stephens K (eds) GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle, 1993–2005

  • Chinnery PF, Curtis AR, Fey C et al (2003) Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet 40:e69

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Crompton DE, Birchall D et al (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130:110–119

    Article  PubMed  Google Scholar 

  • Dan P, Edvardson S, Bielawski J et al (2011) 2-Hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids Health Dis 10:84

    Article  PubMed  CAS  Google Scholar 

  • De Volder AG, Cirelli S, de Barsy T et al (1990) Neuronal ceroid-lipofuscinosis: preferential metabolic alterations in thalamus and posterior association cortex demonstrated by PET. J Neurol Neurosurg Psychiatry 53:1063–1067

    Article  PubMed  Google Scholar 

  • Dehay B, Martinez-Vicente M, Ramirez A et al (2012) Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Delgado RF, Sanchez PR, Speckter H et al (2011) Missense PANK2 mutation without “Eye of the tiger” sign: MR findings in a large group of patients with pantothenate kinase-associated neurodegeneration (PKAN). J Magn Reson Imaging 35(4):788–794

    Article  PubMed  Google Scholar 

  • Deng X, Vidal R, Englander EW (2010) Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neurosci Lett 479:44–48

    Article  PubMed  CAS  Google Scholar 

  • Deschauer M, Gaul C, Behrmann C et al (2012) C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J Neurol 259(11):2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Devos D, Tchofo PJ, Vuillaume I et al (2009) Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation. Brain 132:e109

    Article  PubMed  Google Scholar 

  • Dezortova M, Herynek V, Krssak M et al (2012) Two forms of iron as an intrinsic contrast agent in the basal ganglia of PKAN patients. Contrast Media Mol Imaging 7:509–515

    Article  PubMed  CAS  Google Scholar 

  • Di Fonzo A, Chien HF, Socal M et al (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 68:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Dick KJ, Eckhardt M, Paisan-Ruiz C et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260

    Article  PubMed  CAS  Google Scholar 

  • Doi H, Koyano S, Miyatake S et al (2010) Siblings with the adult-onset slowly progressive type of pantothenate kinase-associated neurodegeneration and a novel mutation, Ile346Ser, in PANK2: clinical features and (99 m) Tc-ECD brain perfusion SPECT findings. J Neurol Sci 290:172–176

    Article  PubMed  CAS  Google Scholar 

  • Dusek P, Jankovic J, Weidong L (2012) Iron dysregulation in movement disorders. Neurobiol Dis 46:1–18

    Article  PubMed  CAS  Google Scholar 

  • Edvardson S, Hama H, Shaag A et al (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 83:643–648

    Article  PubMed  CAS  Google Scholar 

  • Eidelberg D, Sotrel A, Joachim C et al (1987) Adult onset Hallervorden-Spatz disease with neurofibrillary pathology. A discrete clinicopathological entity. Brain 110(Pt 4):993–1013

    Article  PubMed  Google Scholar 

  • Farias FH, Zeng R, Johnson GS et al (2011) A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis 42(3):468–474

    Article  PubMed  CAS  Google Scholar 

  • Fermin-Delgado R, Roa-Sanchez P, Speckter H et al. (2012) Involvement of globus pallidus and midbrain nuclei in pantothenate kinase-associated neurodegeneration: measurement of T2 and T2* Time. Clin Neuroradiol (epub ahead of print)

  • Fleming RE, Ponka P (2012) Iron overload in human disease. N Engl J Med 366:348–359

    Article  PubMed  CAS  Google Scholar 

  • Galvin JE, Giasson B, Hurtig HI et al (2000) Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 157:361–368

    Article  PubMed  CAS  Google Scholar 

  • Garone C, Pippucci T, Cordelli DM et al (2011a) FA2H-related disorders: a novel c.270 + 3A > T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol 53(10):958–961

    Article  PubMed  Google Scholar 

  • Garone C, Pippucci T, Cordelli DM et al (2011b) FA2H-related disorders: a novel c.270 + 3A > T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol 53:958–961

    Article  PubMed  Google Scholar 

  • Gonzalez-Cuyar LF, Perry G, Miyajima H et al (2008) Redox active iron accumulation in aceruloplasminemia. Neuropathology. 28:466–471

    Article  PubMed  Google Scholar 

  • Grandas F, Fernandez-Carballal C, Guzman-de-Villoria J et al (2011) Treatment of a dystonic storm with pallidal stimulation in a patient with PANK2 mutation. Mov Disord 26:921–922

    Article  PubMed  Google Scholar 

  • Gregory A, Hayflick S (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46(2):73–80

    Article  PubMed  CAS  Google Scholar 

  • Gregory A, Westaway SK, Holm IE et al (2008) Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology 71:1402–1409

    Article  PubMed  CAS  Google Scholar 

  • Gruenewald A, Arns B, Seibler P et al (2012) ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging 33(8):1843

    Google Scholar 

  • Hajek M, Adamovicova M, Herynek V et al (2005) MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients. Eur Radiol 15:1060–1068

    Article  PubMed  Google Scholar 

  • Hartig MB, Hortnagel K, Garavaglia B et al (2006) Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 59:248–256

    Article  PubMed  CAS  Google Scholar 

  • Hartig MB, Iuso A, Haack T et al (2011) Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet 89:543–550

    Article  PubMed  CAS  Google Scholar 

  • Hautot D, Pankhurst QA, Morris CM et al (2006) Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta 1772(1):21–25

    PubMed  Google Scholar 

  • Hayflick SJ (2006) Neurodegeneration with brain iron accumulation: from genes to pathogenesis. Semin Pediatr Neurol. 13:182–185

    Article  PubMed  Google Scholar 

  • Hayflick SJ, Penzien JM, Michl W et al (2001) Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol 25:166–169

    Article  PubMed  CAS  Google Scholar 

  • Hayflick SJ, Westaway SK, Levinson B et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    Article  PubMed  CAS  Google Scholar 

  • Hayflick SJ, Hartman M, Coryell J et al (2006) Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 27:1230–1233

    PubMed  CAS  Google Scholar 

  • Horvath R, Holinski-Feder E, Neeve V et al.(2012) A new phenotype of brain iron accumulation with dystonia, optic atrophy and peripheral neuropathy. Mov Disord (in press)

  • Kaneko K, Hineno A, Yoshida K et al (2012) Extensive brain pathology in a patient with aceruloplasminemia with a prolonged duration of illness. Hum Pathol 43:451–456

    Article  PubMed  Google Scholar 

  • Keogh MJ, Jonas P, Coulthard A et al (2012) Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics 13:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kostic VS, Svetel M, Mijajlovic M et al (2011) Transcranial sonography in pantothenate kinase-associated neurodegeneration. J Neurol 259(5):959–964

    Article  PubMed  Google Scholar 

  • Kotzbauer PT, Truax AC, Trojanowski JQ et al (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci 25:689–698

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Fogel W, Tronnier V et al (2006) Long-term benefit to pallidal deep brain stimulation in a case of dystonia secondary to pantothenate kinase-associated neurodegeneration. Mov Disord 21:2255–2257

    Article  PubMed  Google Scholar 

  • Kruer M, Gregory A, Hogarth P, Hayflick S (2009) Static encephalopathy of childhood with neurodegeneration in adulthood (SENDA syndrome): a novel neurodegneration with brain iron accumulation (NBIA) phenotype. (oral correspondence). Ref Type: Abstract

  • Kruer MC, Paisan-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68(5):611–618

    Article  PubMed  CAS  Google Scholar 

  • Kruer MC, Hiken M, Gregory A et al (2011) Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain. 134:947–958

    Article  PubMed  Google Scholar 

  • Kruer MC, Paudel R, Wagoner W et al (2012) Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neurosci Lett 523:35–38

    Article  PubMed  CAS  Google Scholar 

  • Kubota A, Hida A, Ichikawa Y et al (2008) A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: Description of clinical features and implications for genotype-phenotype correlations. Mov Disord 24(3):441–445

    Article  Google Scholar 

  • Kupsch A, Kuehn A, Klaffke S et al (2003) Deep brain stimulation in dystonia. J Neurol 250(Suppl 1):I47–I52

    Article  PubMed  Google Scholar 

  • Kurian MA, Morgan NV, MacPherson L et al (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Turtzo C, Llinas RH (2007) Superficial siderosis: a case report and review of the literature. Nat Clin Pract Neurol 3:54–58

    Article  PubMed  Google Scholar 

  • Li X, Jankovic J (2011) Iron chelation and neuroprotection in neurodegenerative diseases. J Neural Transm 118:473–477

    Article  PubMed  CAS  Google Scholar 

  • Liman J, Wellmer A, Rostasy K et al (2011) Transcranial ultrasound in neurodegeneration with brain iron accumulation (NBIA). Eur J Paediatr Neurol 16(2):175–178

    Article  PubMed  Google Scholar 

  • Mak CM, Sheng B, Lee HH et al (2011) Young-onset parkinsonism in a Hong Kong Chinese man with adult-onset Hallervorden-Spatz syndrome. Int J Neurosci 121:224–227

    Article  PubMed  CAS  Google Scholar 

  • Malik I, Turk J, Mancuso DJ et al (2008) Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol 172:406–416

    Article  PubMed  CAS  Google Scholar 

  • Marelli C, Piacentini S, Garavaglia B et al (2005) Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord 20:208–212

    Article  PubMed  Google Scholar 

  • McNeill A, Birchall D, Hayflick SJ et al (2008a) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619

    Article  PubMed  CAS  Google Scholar 

  • McNeill A, Pandolfo M, Kuhn J et al (2008b) The neurological presentation of ceruloplasmin gene mutations. Eur Neurol 60:200–205

    Article  PubMed  Google Scholar 

  • McNeill A, Birchall D, Hayflick SJ et al (2008c) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 70:1614–1619

    Article  PubMed  CAS  Google Scholar 

  • Mikati MA, Yehya A, Darwish H et al (2009) Deep brain stimulation as a mode of treatment of early onset pantothenate kinase-associated neurodegeneration. Eur J Paediatr Neurol 13:61–64

    Article  PubMed  Google Scholar 

  • Morgan NV, Westaway SK, Morton JE et al (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754

    Article  PubMed  CAS  Google Scholar 

  • Najim al-Din AS, Wriekat A, Mubaidin A et al (1994) Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 89:347–352

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Adler S, Schluter O et al (2000) Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol 100:568–574

    Article  PubMed  CAS  Google Scholar 

  • Oide T, Yoshida K, Kaneko K et al (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32:170–176

    Article  PubMed  CAS  Google Scholar 

  • Ondo WG, Adam OR, Jankovic J et al (2010) Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov Disord 25:2470–2472

    Article  PubMed  Google Scholar 

  • Ostrem JL, Marks WJ Jr, Volz MM et al (2007) Pallidal deep brain stimulation in patients with cranial-cervical dystonia (Meige syndrome). Mov Disord 22:1885–1891

    Article  PubMed  Google Scholar 

  • Paisan-Ruiz C, Bhatia KP, Li A et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65:19–23

    Article  PubMed  Google Scholar 

  • Paisan-Ruiz C, Li A, Schneider SA et al (2010a) Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 33(4):814–823

    Article  PubMed  CAS  Google Scholar 

  • Paisan-Ruiz C, Guevara R, Federoff M et al (2010b) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord 25:1791–1800

    Article  PubMed  Google Scholar 

  • Park JS, Mehta P, Cooper AA et al (2011) Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset Parkinsonism. Hum Mutat 32(8):956–964

    Article  PubMed  CAS  Google Scholar 

  • Pierson TM, Simeonov DR, Sincan M et al (2012) Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet 20:476–479

    Article  PubMed  CAS  Google Scholar 

  • Potter KA, Kern MJ, Fullbright G et al (2011) Central nervous system dysfunction in a mouse model of Fa2h deficiency. Glia 59:1009–1021

    Article  PubMed  Google Scholar 

  • Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kawai M, Inoue K et al (2000) Widespread expression of alpha-synuclein and tau immunoreactivity in Hallervorden-Spatz syndrome with protracted clinical course. J Neurol Sci 177:48–59

    Article  PubMed  CAS  Google Scholar 

  • Schneider SA, Bhatia KP (2010) Three faces of the same gene: fA2H links neurodegeneration with brain iron accumulation, leukodystrophies, and hereditary spastic paraplegias. Ann Neurol 68:575–577

    Article  PubMed  CAS  Google Scholar 

  • Schneider SA, Hardy J, Bhatia KP (2009) Iron accumulation in syndromes of neurodegeneration with brain accumulation—causative or consequential? J Neurol Neurosurg Psychiatry 80:589–590

    Article  PubMed  CAS  Google Scholar 

  • Schneider SA, Paisan-Ruiz C, Quinn NP et al (2010) ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 25:979–984

    Article  PubMed  Google Scholar 

  • Schneider SA, Hardy J, Bhatia KP (2012) Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 27:42–53

    Article  PubMed  CAS  Google Scholar 

  • Seo JH, Song SK, Lee PH (2009) A Novel PANK2 mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset Parkinsonism. J Clin Neurol 5:192–194

    Article  PubMed  Google Scholar 

  • Speelman JD, Contarino MF, Schuurman PR et al (2010) Deep brain stimulation for dystonia: patient selection and outcomes. Eur J Neurol 17(Suppl 1):102–106

    Article  PubMed  Google Scholar 

  • Stankiewicz J, Panter SS, Neema M et al (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 4:371–386

    Article  PubMed  CAS  Google Scholar 

  • Szumowski J, Bas E, Gaarder K et al (2010) Measurement of brain iron distribution in Hallevorden-Spatz syndrome. J Magn Reson Imaging 31:482–489

    Article  PubMed  Google Scholar 

  • Thomas M, Hayflick SJ, Jankovic J (2004) Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden-Spatz syndrome) and pantothenate kinase-associated neurodegeneration. Mov Disord 19:36–42

    Article  PubMed  Google Scholar 

  • Timmermann L, Pauls KA, Wieland K et al (2010) Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation. Brain 133:701–712

    Article  PubMed  CAS  Google Scholar 

  • Tome FM, Brunet P, Fardeau M et al (1985) Familial disorder of the central and peripheral nervous systems with particular cytoplasmic lamellated inclusions in peripheral nerves, muscle satellite cells, and blood capillaries. Acta Neuropathol 68:209–217

    Article  PubMed  CAS  Google Scholar 

  • Tonelli A, D’Angelo MG, Arrigoni F et al (2012) Atypical adult onset complicated spastic paraparesis with thin corpus callosum in two patients carrying a novel FA2H mutation. Eur J Neurol 19(11):e127–e129

    Article  PubMed  CAS  Google Scholar 

  • Usenovic M, Knight AL, Ray A et al (2012) Identification of novel ATP13A2 interactors and their role in alpha-synuclein misfolding and toxicity. Hum Mol Genet 21:3785–3794

    Article  PubMed  CAS  Google Scholar 

  • Vidal R, Ghetti B, Takao M et al (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63:363–380

    PubMed  CAS  Google Scholar 

  • Vinters H, Farrell M, Mischel P et al. (1998) Diagnostic neuropathology. New York, NY, USA: Marcel Dekker Incorporated: 502

  • Wakabayashi K, Fukushima T, Koide R et al (2000) Juvenile-onset generalized neuroaxonal dystrophy (Hallervorden-Spatz disease) with diffuse neurofibrillary and lewy body pathology. Acta Neuropathol 99:331–336

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel D, van GP, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46:123–125

    Article  PubMed  CAS  Google Scholar 

  • Williams DR, Hadeed A (2005) al Din AS et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 20:1264–1271

    Article  PubMed  Google Scholar 

  • Williamson K, Sima AA, Curry B et al (1982) Neuroaxonal dystrophy in young adults: a clinicopathological study of two unrelated cases. Ann Neurol 11:335–343

    Article  PubMed  CAS  Google Scholar 

  • Wohlke A, Philipp U, Bock P et al (2011) A one base pair deletion in the canine ATP13A2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the Tibetan terrier. PLoS Genet 7:e1002304

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kaneko K, Miyajima H et al (2000) Increased lipid peroxidation in the brains of aceruloplasminemia patients. J Neurol Sci 175:91–95

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Li X, Luo F et al (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37:307–313

    Article  PubMed  CAS  Google Scholar 

  • Zoller I, Meixner M, Hartmann D et al (2008) Absence of 2-hydroxylated Sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J Neurosci 28:9741–9754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to The Bosch Foundation.

Conflict of interest

The authors have no financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne A. Schneider.

Additional information

For the special issue “MDPD 2012” edited by Amos D. Korczyn and H. Reichmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, S.A., Bhatia, K.P. Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA). J Neural Transm 120, 695–703 (2013). https://doi.org/10.1007/s00702-012-0922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0922-8

Keywords

Navigation