Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale cortical correlation structure of spontaneous oscillatory activity

Abstract

Little is known about the brain-wide correlation of electrophysiological signals. We found that spontaneous oscillatory neuronal activity exhibited frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography. Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency-specific power envelope correlations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power envelope correlation.
Figure 2: Power envelope correlations between orthogonalized spontaneous signals from homologous early sensory areas.
Figure 3: Correlation maps for selected locations at a carrier frequency of 16 Hz.
Figure 4: Graph-theoretical analysis of the global correlation structure of band-limited neuronal signals.
Figure 5: Correlation maps for identified hubs at a carrier frequency of 16 Hz.
Figure 6: Spatial patterning of betweenness as a function of the carrier frequency.

Similar content being viewed by others

References

  1. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  Google Scholar 

  2. Fox, M.D. & Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  Google Scholar 

  3. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  Google Scholar 

  4. Vincent, J.L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).

    Article  Google Scholar 

  5. Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E. & Buckner, R.L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  Google Scholar 

  6. Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z. & Buckner, R.L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139 (2008).

    Article  Google Scholar 

  7. Dosenbach, N.U.F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 104, 11073–11078 (2007).

    Article  CAS  Google Scholar 

  8. Buckner, R.L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  CAS  Google Scholar 

  9. Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  Google Scholar 

  10. Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L. & Corbetta, M. From the cover: learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. USA 106, 17558–17563 (2009).

    Article  CAS  Google Scholar 

  11. Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).

    Article  CAS  Google Scholar 

  12. Zhang, D. & Raichle, M.E. Disease and the brain's dark energy. Nat Rev Neurol. 6, 15–28 (2010).

    Article  Google Scholar 

  13. Hawellek, D.J., Hipp, J.F., Lewis, C.M., Corbetta, M. & Engel, A.K. Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. USA 108, 19066–19071 (2011).

    Article  CAS  Google Scholar 

  14. Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  Google Scholar 

  15. Sirotin, Y.B. & Das, A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457, 475–479 (2009).

    Article  CAS  Google Scholar 

  16. Heeger, D.J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    Article  CAS  Google Scholar 

  17. Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  Google Scholar 

  18. Donner, T.H. & Siegel, M. A framework for local cortical oscillation patterns. Trends Cogn. Sci. 15, 191–199 (2011).

    Article  Google Scholar 

  19. Siegel, M., Donner, T.H. & Engel, A.K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).

    Article  CAS  Google Scholar 

  20. Bruns, A., Eckhorn, R., Jokeit, H. & Ebner, A. Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11, 1509–1514 (2000).

    Article  CAS  Google Scholar 

  21. Siegel, M., Donner, T.H., Oostenveld, R., Fries, P. & Engel, A.K. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60, 709–719 (2008).

    Article  CAS  Google Scholar 

  22. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    Article  CAS  Google Scholar 

  23. Hipp, J.F., Engel, A.K. & Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387–396 (2011).

    Article  CAS  Google Scholar 

  24. Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004).

    Article  Google Scholar 

  25. Schoffelen, J.-M. & Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009).

    Article  Google Scholar 

  26. Cordes, D. et al. Frequencies contributing to functional connectivity in the cerebral cortex in 'resting-state' data. AJNR Am. J. Neuroradiol. 22, 1326–1333 (2001).

    CAS  PubMed  Google Scholar 

  27. Nir, Y. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 11, 1100–1108 (2008).

    Article  CAS  Google Scholar 

  28. Brookes, M.J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104 (2011).

    Article  Google Scholar 

  29. Brookes, M.J. et al. Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc. Natl. Acad. Sci. USA 108, 16783–16788 (2011).

    Article  CAS  Google Scholar 

  30. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  Google Scholar 

  31. He, B.J., Snyder, A.Z., Zempel, J.M., Smyth, M.D. & Raichle, M.E. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl. Acad. Sci. USA 105, 16039–16044 (2008).

    Article  CAS  Google Scholar 

  32. Miller, K.J., Weaver, K.E. & Ojemann, J.G. Direct electrophysiological measurement of human default network areas. Proc. Natl. Acad. Sci. USA 106, 12174–12177 (2009).

    Article  CAS  Google Scholar 

  33. Greicius, M.D., Krasnow, B., Reiss, A.L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  Google Scholar 

  34. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103, 19518–19523 (2006).

    Article  CAS  Google Scholar 

  35. Liu, Z., Fukunaga, M., de Zwart, J.A. & Duyn, J.H. Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51, 102–111 (2010).

    Article  Google Scholar 

  36. de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. USA 107, 6040–6045 (2010).

    Article  CAS  Google Scholar 

  37. Laufs, H. et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 100, 11053–11058 (2003).

    Article  CAS  Google Scholar 

  38. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L. & Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 104, 13170–13175 (2007).

    Article  CAS  Google Scholar 

  39. Jann, K., Kottlow, M., Dierks, T., Boesch, C. & Koenig, T. Topographic electrophysiological signatures of FMRI resting state networks. PLoS ONE 5, e12945 (2010).

    Article  Google Scholar 

  40. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  Google Scholar 

  41. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–118 (2011).

    Article  CAS  Google Scholar 

  42. Battaglia, F.P., Benchenane, K., Sirota, A., Pennartz, C.M.A. & Wiener, S.I. The hippocampus: hub of brain network communication for memory. Trends Cogn. Sci. 15, 310–318 (2011).

    PubMed  Google Scholar 

  43. Leopold, D.A., Murayama, Y. & Logothetis, N.K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 422–433 (2003).

    Article  Google Scholar 

  44. Deco, G., Jirsa, V.K. & McIntosh, A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    Article  CAS  Google Scholar 

  45. Schölvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H. & Leopold, D.A. Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. USA 107, 10238–10243 (2010).

    Article  Google Scholar 

  46. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  Google Scholar 

  47. Goense, J.B.M. & Logothetis, N.K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18, 631–640 (2008).

    Article  CAS  Google Scholar 

  48. Scheeringa, R. et al. Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69, 572–583 (2011).

    Article  CAS  Google Scholar 

  49. Magri, C., Schridde, U., Murayama, Y., Panzeri, S. & Logothetis, N.K. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J. Neurosci. 32, 1395–1407 (2012).

    Article  CAS  Google Scholar 

  50. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).

    Article  CAS  Google Scholar 

  51. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article  Google Scholar 

  52. Tallon-Baudry, C., Bertrand, O., Delpuech, C. & Pernier, J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 16, 4240–4249 (1996).

    Article  CAS  Google Scholar 

  53. Laird, A.R. et al. ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front. Neuroinform. 3, 23 (2009).

    Article  Google Scholar 

  54. Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003).

    Article  Google Scholar 

  55. Van Veen, B.D., van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).

    Article  CAS  Google Scholar 

  56. Gross, J. et al. Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 98, 694–699 (2001).

    Article  CAS  Google Scholar 

  57. Schepers, I.M., Hipp, J.F., Schneider, T.R., Röder, B. & Engel, A.K. Functionally specific oscillatory activity correlates between visual and auditory cortex in the blind. Brain 135, 922–934 (2012).

    Article  Google Scholar 

  58. Donner, T.H., Siegel, M., Fries, P. & Engel, A.K. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr. Biol. 19, 1581–1585 (2009).

    Article  CAS  Google Scholar 

  59. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    Article  CAS  Google Scholar 

  60. Van Essen, D.C.A. Population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Hipp for helpful discussions and comments on the manuscript, and the bwGRiD project (http://www.bw-grid.de) for the computational resources. This work was supported by grants from the European Union (NEST-PATH-043457 to A.K.E. and HEALTH-F2-2008-200728 to M.C. and A.K.E.) and the National Institute of Mental Health (R01 MH096482-01 to M.C.).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors designed the experiment and wrote the paper. J.F.H. and D.J.H. collected the data and performed the data analysis. J.F.H. conceived the orthogonalization approach.

Corresponding author

Correspondence to Joerg F Hipp.

Ethics declarations

Competing interests

A patent on the method of power-envelope correlation between orthogonalized signals has been filed by the University Medical Center Hamburg-Eppendorf with Joerg F. Hipp as inventor.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Data (PDF 2855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hipp, J., Hawellek, D., Corbetta, M. et al. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15, 884–890 (2012). https://doi.org/10.1038/nn.3101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing