Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical and asymmetric temporal sensitivity in human auditory cortices

Abstract

Lateralization of function in auditory cortex has remained a persistent puzzle. Previous studies using signals with differing spectrotemporal characteristics support a model in which the left hemisphere is more sensitive to temporal and the right more sensitive to spectral stimulus attributes. Here we use single-trial sparse-acquisition fMRI and a stimulus with parametrically varying segmental structure affecting primarily temporal properties. We show that both left and right auditory cortices are remarkably sensitive to temporal structure. Crucially, beyond bilateral sensitivity to timing information, we uncover two functionally significant interactions. First, local spectrotemporal signal structure is differentially processed in the superior temporal gyrus. Second, lateralized responses emerge in the higher-order superior temporal sulcus, where more slowly modulated signals preferentially drive the right hemisphere. The data support a model in which sounds are analyzed on two distinct timescales, 25–50 ms and 200–300 ms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concatenated narrow-band noise stimuli.
Figure 2: Surface-mapped activation from the cohort analysis shown on the inflated N27 brain.
Figure 3: Comparison of physiological (cohort analysis) and behavioral responses.
Figure 4: ROI analysis: STG sensitivity to segment type and STS hemispheric asymmetry.
Figure 5: STS activation from cohort analysis.

Similar content being viewed by others

References

  1. Hall, D.A., Hart, H.C. & Johnsrude, I.S. Relationships between human auditory cortical structure and function. Audiol. Neurootol. 8, 1–18 (2003).

    Article  Google Scholar 

  2. Zatorre, R., Belin, P. & Penhune, V. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    Article  Google Scholar 

  3. Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time'. Speech Commun. 41, 245–255 (2003).

    Article  Google Scholar 

  4. Zatorre, R. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    Article  CAS  Google Scholar 

  5. Binder, J.R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528 (2000).

    Article  CAS  Google Scholar 

  6. Scott, S.K. & Johnsrude, I.S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26, 100–107 (2003).

    Article  CAS  Google Scholar 

  7. Hickok, G. & Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn. Sci. 4, 131–138 (2000).

    Article  CAS  Google Scholar 

  8. Johnsrude, I.S., Penhune, V.B. & Zatorre, R.J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–163 (2000).

    Article  Google Scholar 

  9. Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  Google Scholar 

  10. Gandour, J. et al. A cross-linguistic FMRI study of spectral and temporal cues underlying phonological processing. J. Cogn. Neurosci. 14, 1076–1087 (2002).

    Article  Google Scholar 

  11. Giraud, A-L. et al. Representation of the temporal envelope of sounds in the human brain. J. Neurophysiol. 84, 1588–1598 (2000).

    Article  CAS  Google Scholar 

  12. Shamma, S. On the role of space and time in auditory processing. Trends Cogn. Sci. 5, 340–348 (2001).

    Article  CAS  Google Scholar 

  13. Hall, D.A. et al. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 12, 140–149 (2002).

    Article  Google Scholar 

  14. Hall, D.A. et al. 'Sparse' temporal sampling in auditory fMRI. Hum. Brain Mapp. 7, 213–223 (1999).

    Article  CAS  Google Scholar 

  15. Edmister, W.B., Talavage, T.M., Ledden, P.J. & Weisskoff, R.M. Improved auditory cortex imaging using clustered volume acquisitions. Hum. Brain Mapp. 7, 89–97 (1999).

    Article  CAS  Google Scholar 

  16. Stevens, K.N. Acoustic Phonetics (MIT Press, Cambridge, Massachusetts, USA, 1998).

    Google Scholar 

  17. Moore, B.C.J. in Human Psychophysics (eds. Yost, W.A., Popper, A.N. & Fay, R.R.) (Springer, New York, 1993).

    Google Scholar 

  18. Hackett, T.A., Preuss, T.M. & Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441, 197–222 (2001).

    Article  CAS  Google Scholar 

  19. Griffiths, T.D., Buchel, C., Frackowiak, R.S. & Patterson, R.D. Analysis of temporal structure in sound by the human brain. Nat. Neurosci. 1, 422–427 (1998).

    Article  CAS  Google Scholar 

  20. Harms, M.P. & Melcher, J.R. Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J. Neurophysiol. 88, 1433–1450 (2002).

    Article  Google Scholar 

  21. Wang, X., Lu, T. & Liang, L. Cortical processing of temporal modulations. Speech Commun. 41, 107–121 (2003).

    Article  CAS  Google Scholar 

  22. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    Article  CAS  Google Scholar 

  23. Yost, W.A. Auditory image perception and analysis: the basis for hearing. Hear. Res. 56, 8–18 (1991).

    Article  CAS  Google Scholar 

  24. Yabe, H. et al. Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Brain Res. 897, 222–227 (2001).

    Article  Google Scholar 

  25. Winkler, I., Reinikainen, K. & Naatanen, R. Event-related brain potentials reflect traces of echoic memory in humans. Percept. Psychophys. 53, 443–449 (1993).

    Article  CAS  Google Scholar 

  26. Sussman, E., Winkler, I., Ritter, W., Alho, K. & Naatanen, R. Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity. Neurosci. Lett. 264, 161–164 (1999).

    Article  CAS  Google Scholar 

  27. Zwislocki, J. Theory of temporal auditory summation. J. Acoust. Soc. Am. 32, 1046–1060 (1960).

    Article  Google Scholar 

  28. Kaas, J.H. & Hackett, T.A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  Google Scholar 

  29. Geschwind, N. & Levitsky, W. Human brain: left-right asymmetries in temporal speech region. Science 161, 186–187 (1968).

    Article  CAS  Google Scholar 

  30. Galuske, R.A., Schlote, W., Bratzke, H. & Singer, W. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289, 1946–1949 (2000).

    Article  CAS  Google Scholar 

  31. Jäncke, L., Wustenberg, T., Scheich, H. & Heinze, H.J. Phonetic perception and the temporal cortex. Neuroimage 15, 733–746 (2002).

    Article  Google Scholar 

  32. Näätänen, R. et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385, 432–434 (1997).

    Article  Google Scholar 

  33. Palva, S. et al. Distinct gamma-band evoked responses to speech and non-speech sounds in humans. J. Neurosci. 22, RC211 (2002).

    Article  Google Scholar 

  34. Schwartz, J. & Tallal, P. Rate of acoustic change may underlie hemispheric specialization for speech perception. Science 207, 1380–1381 (1980).

    Article  CAS  Google Scholar 

  35. Divenyi, P.L. & Robinson, A.J. Nonlinguistic auditory capabilities in aphasia. Brain Lang. 37, 290–326 (1989).

    Article  CAS  Google Scholar 

  36. Meyer, M., Alter, K., Friederici, A.D., Lohmann, G. & von Cramon, D.Y. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum. Brain Mapp. 17, 73–88 (2002).

    Article  Google Scholar 

  37. Ivry, R.B. & Robertson, L.C. The Two Sides of Perception (Bradford Books, MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  38. Lu, T., Liang, L. & Wang, X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4, 1131–1138 (2001).

    Article  CAS  Google Scholar 

  39. Smith, Z.M., Delgutte, B. & Oxenham, A.J. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416, 87–90 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bandettini, J. Fritz, A.-L. Giraud, A. Martin and J. Rauschecker for insightful critical comments; F. Husain for help with experimental setup; and K.M. Boemio for her continued and continuous encouragement. A.B. and D.P. were supported by US National Institutes of Health R01 DC05660 to D.P. During the preparation of the manuscript, D.P. was a fellow at the Wissenschaftskolleg zu Berlin and the American Academy Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Poeppel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

STS activation from single-subject ROI analysis. (PDF 102 kb)

Supplementary Fig. 2

Differential cortical connectivity model depicting hypothesized connectivity between areas STG and STS. (PDF 25 kb)

Supplementary Audio 1

CN (WAV 775 kb)

Supplementary Audio 2

FM, 25 ms (WAV 775 kb)

Supplementary Audio 3

FM, 300 ms (WAV 775 kb)

Supplementary Audio 4

TN, 25 ms (WAV 775 kb)

Supplementary Audio 5

TN, 300 ms (WAV 775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boemio, A., Fromm, S., Braun, A. et al. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8, 389–395 (2005). https://doi.org/10.1038/nn1409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing