Stop testing for autoantibodies to the VGKC-complex: only request LGI1 and CASPR2

Sophia Michael,1,2 Patrick Waters,1 Sarosh R Irani1,2

ABSTRACT

Autoantibodies to leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein like-2 (CASPR2) are associated with clinically distinctive syndromes that are highly immunotherapy responsive, such as limbic encephalitis, faciobrachial dystonic seizures, Morvan’s syndrome and neuromyotonia. These autoantibodies target surface-exposed domains of LGI1 or CASPR2, and appear to be directly pathogenic. In contrast, voltage-gated potassium channel (VGKC) antibodies that lack LGI1 or CASPR2 reactivities (‘double-negative’) are common in healthy controls and have no consistent associations with distinct syndromes. These antibodies target intracellular epitopes and lack pathogenic potential. Moreover, the clinically important LGI1 and CASPR2 antibodies comprise only ~15% of VGKC-positive results, meaning that most VGKC-antibody positive results mislead rather than help. Further, initial VGKC testing misses some cases that have LGI1 and CASPR2 antibodies. These collective observations confirm that laboratories should stop testing for VGKC antibodies and instead, test only for LGI1 and CASPR2 antibodies. This change in practice will lead to significant patient benefit.

VGKC ANTIBODIES: ORIGINS OF A DIAGNOSTIC TEST

The initial clinical insights describing an autoimmune basis for acquired neuromyotonia (Isaacs’ syndrome), a form of peripheral nerve hyperexcitability, emerged in Oxford around 30 years ago. A patient with severe disease, refractory to sodium channel blocking medications, showed almost complete symptom resolution after plasma exchange.1 Moreover, this patient’s purified IgG induced muscle hyperexcitability in phrenic nerve-diaphragm preparations. These findings suggested an underlying autoantibody-driven mechanism for neuromyotonia, with voltage-gated potassium channels (VGKCs) considered a likely antigenic target.

This prediction was directly tested with alpha-dendrotoxin (α-DTX), a neurotoxin derived from green mamba snake venom. α-DTX labels Kv1.1, 1.2 and 1.6 potassium channels and was radiodinated to label soluble mammalian brain extracts upon establishment of the VGKC antibody radioimmunoassay. This radioimmunoassay detected serum or cerebrospinal fluid auto-antibodies that precipitated iodinated α-DTX. Hence, these autoantibodies were originally thought to bind VGKCs,2,3 and some reports even showed IgG from patients binding directly to oocyte or HEK293T-cell-expressed VGKCs.2,4 During this series of molecular observations, VGKC antibodies were also identified in patients with Morvan’s syndrome (neuromyotonia with characteristic central nervous system manifestations)4 and limbic encephalitis.5-7 Importantly, patients with these syndromes improved markedly following immunotherapy. Overall, these serological discoveries helped to describe and classify a potentially reversible set of autoimmune neurological conditions.

Subsequently, these findings were rapidly disseminated through the neurology community. To avoid missing a potentially immunotherapy-responsive condition, VGKC antibodies were requested in patients with a wider spectrum of clinical features. This led to a large number of positive VGKC antibody results, in broad-ranging phenotypes. Many of these syndromes were not immunotherapy-responsive or intuitively immune-mediated. This non-distinctive set of syndromes led us to question how antibodies to a single protein family could cause such a variety of diseases (Figure 1).

SPLITTING THE COMPLEX: IDENTIFICATION OF LGI1 AND CASPR2, AND CLINICAL ASSOCIATIONS

Biochemical interrogation of proteins complexed to VGKCs identified that leucine-rich glioma-inactivated 1 (LGI1)
and contactin-associated protein like-2 (CASPR2) were the actual targets of patient autoantibodies in the immunotherapy-responsive syndromes: limbic encephalitis, Morvan’s syndrome and neuromyotonia. Also, a few patients had contactin-2 antibodies. Crucially, the extracellular-exposed domains of these proteins were the direct antigenic epitopes. Table 1 describes the characteristics of these molecules, plus the LGI1 receptors ADAM22 and 23.

LGI1 is a secreted neuronal protein, known to link pre- and post-synaptic terminals, akin to a molecular scaffold. Patients with LGI1 antibodies are typically aged over 60, with a 2:1 male to female predominance. LGI1 antibodies are prominent in patients with limbic encephalitis, found in many with Morvan’s syndrome, and in a few with neuromyotonia. In addition, around 50% of patients with LGI1-antibodies show a highly specific seizure semiology—termed faciobrachial dystonic seizures. Faciobrachial dystonic seizures typically begin before the onset of the cognitive impairment that characterises limbic encephalitis and are largely resistant to antiseizure medications but respond well to immunotherapies, often within a few days. They provide an excellent example of a distinctive phenotype with a robust response to immunotherapies whose characteristics translate to the other frequent focal seizure semio logies in patients with LGI1-antibodies.

CASPR2 is a neurexin family protein with a large extracellular domain. Patients with CASPR2 autoantibodies are very often elderly males (Table 2). CASPR2 antibody–positive patients often have neuromyotonia or Morvan’s syndrome, and some have forms of limbic encephalitis as well as neuropathic pain syndromes. All typically respond to immunotherapy. Also, in patients with neuromyotonia and, especially, Morvan’s syndrome there is an association with tumours, typically thymomas. Importantly, LGI1 or CASPR2 specificities are rare outside of these syndromes. taken together, LGI1 and CASPR2 antibodies have strong and specific clinical associations, and unequivocal clinical value in accurately detecting treatable syndromes.
These range from epilepsies, non-neuropathic pain, of syndromes without age or gender predilection. negative VGKC antibodies associate with a constellation of primary psychiatric syndromes and leptomeningeal metastasis.26

in children, <5%:31 both observations are consistent with widespread testing.26 28 Second, and in marked contrast to the well-defined clinical phenotypes associated with LG1 and CASPR2 autoantibodies (Figure 1, Table 2), double-negative VGKC antibodies associate with a constellation of syndromes without age or gender predilection. These range from epilepsies, non-neuropathic pain, Alzheimer’s disease, peripheral neuropathy and headache, to primary psychiatric syndromes and leptomeningeal metastasis.26–28 Hence, it appears that double-negative VGKC antibodies have limited clinical specificity. Third, the VGKC antibody titre is not a clinically reliable measure: double-negative VGKC antibodies can occur at very high titres (eg 400–3000 pM). Therefore, the titre itself does not help in identifying LG1 or CASPR2 specificity.26 27 29 30 33 Indeed, in clinical practice the concept of a ‘clinically relevant’ VGKC antibody titre has created many misdiagnoses, often where finding the antibody has overruled the clinical diagnosis.33–36

FEATURES ASSOCIATED WITH DOUBLE-NEGATIVE VGKC ANTIBODIES

More recently, data from several groups have clarified the clinical relevance of double-negative VGKC antibodies, that is, VGKC antibodies without LG1 or CASPR2 reactivities.26–28

Frequency and highly heterogeneous clinical features

In the largest such series, testing of ~100 000 samples yielded 3910 (~4%) samples with VGKC antibodies. Only 256 of these 3910 (6.5%) showed concomitant LG1 or CASPR2 reactivities.29 Other studies report comparable rates of LG1/CASPR2 antibodies amongst VGKC-antibody positive results: ~20% in adults30 and, in children, <5%.31 both observations are consistent with our unpublished experience. Hence, double-negative VGKC antibodies appear to account for ~85% of routine VGKC antibody requests. Is there any clinical utility in detecting these common antibodies? The data suggest not. First, double-negative VGKC-complex autoantibodies occur in ~5% of healthy controls, complicating their interpretation especially with widespread testing.26 28 Second, and in marked contrast to the well-defined clinical phenotypes associated with LG1 and CASPR2 autoantibodies (Figure 1, Table 2), double-negative VGKC antibodies associate with a constellation of syndromes without age or gender predilection. These range from epilepsies, non-neuropathic pain, Alzheimer’s disease, peripheral neuropathy and headache, to primary psychiatric syndromes and leptomeningeal metastasis.26–28 Hence, it appears that double-negative VGKC antibodies have limited clinical specificity. Third, the VGKC antibody titre is not a clinically

Immunotherapy response

Patients with LG1 and CASPR2 autoantibodies respond strikingly to immunotherapy, with improvements in 96%–100% of patients with LG1 antibodies and 86%–100% with CASPR2 antibodies.24–26 29 Hence, detecting LG1 and CASPR2 antibodies has clear therapeutic importance. In marked contrast, patients with double-negative VGKC antibodies respond poorly to immunotherapy, with response rates equal to those of placebo studies, or to rates observed from patients with negative VGKC test results.26 28 44

Serological observations: intracellular binding and non-pathogenicity

As our clinical suspicions increasingly indicated that double-negative antibodies had little clinical relevance, we predicted that studying their antigenic targets would offer clinically-relevant insights.28 First, we observed that the double-negative serum IgGs did not bind to any surface determinants expressed on live hippocampal neurons. Second, no double-negative IgGs bound to the extracellular domain of HEK293T cell surface expressed VGKCs. However, in this preparation, around one-third bound to intracellular
aspects of the Kv1.1/1.2/1.6 subunits. Finally, a small proportion of the double-negative VGKC antibody sera directly bound the non-mammalian α-DTX employed in the radioimmunoassay. Taken together, these findings established that double-negative VGKC antibodies often bind targets that, in vivo in humans, are inaccessible or unavailable, thus mitigating their pathogenic potential.

By contrast, LGI1 or CASPR2 antibodies typically show robust cell-surface reactivity to the native, mammalian target (Figure 2) and strong data support their in vitro and in vivo functionality. For example, LGI1 antibodies can disrupt interactions between LGI1 and its receptors ADAM22/23, internalise the LGI1–ADAM complex and trigger neuronal hyperexcitability and memory deficits in vivo passive transfer models.20 21 25 42 There is also clear evidence supporting the pathogenicity of CASPR2 antibodies with rodent passive transfer reproducing human pain manifestations, and evidence that the antibodies can disrupt CASPR2 interactions with contactin-2.22 43

Genetic associations
Recently, a very strong immunogenetic basis was established for the diseases associated with LGI1 and CASPR2 antibodies.32 40 41 45 LGI1 and CASPR2 antibodies were found to be over-represented in patients with LGI1 autoantibodies (~95% vs ~25% in healthy controls) and in those with CASPR2 autoantibodies (~50% vs ~10% in healthy controls), respectively. Extended haplotype associations were also observed.32 Moreover, the few patients with both LGI1 and CASPR2 antibodies carried yet another set of distinct HLA alleles.32 By contrast, there were no distinct HLA associations in patients with intracellular VGKC antibodies.32 Our recent clinical observations suggest the HLA analyses may form a useful adjunct to complement clinico-serological diagnoses (Irani and Waters, unpublished, 2020).

Table 2 Comparisons of autoantibodies against LGI1, CASPR2, and the double-negative VGKC antibodies

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Autoantibody</th>
<th>CASPR2</th>
<th>Double-negative VGKC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical features</td>
<td>LGI1</td>
<td>CASPR2</td>
<td></td>
</tr>
<tr>
<td>Well-delineated clinical syndromes?</td>
<td>Yes24 25; Faciobrachial dystonic seizures; Limbic encephalitis (other frequent focal seizure semiologies, encephalopathy, sleep disorder, amnesia, anxiety, emotionality dysautonomia); Hyponatraemia in ~65%</td>
<td>Yes8 9 23; CNS: limbic encephalitis—seizures, confusion, hallucinations, insomnia PNS: neuromyotony (neuropathic pain, spasms, cramps) Morvan’s syndrome: above including insomnia and dysautonomia, often with weight loss</td>
<td>No: 5% rate in healthy controls and detected in heterogeneous, often non-immune, syndromes including varied epilepsies; widespread, non-neuropathic pain; Parkinson’s disease; headache; primary psychiatric conditions16–28 32</td>
</tr>
<tr>
<td>Demographics: gender ratio and median age of onset</td>
<td>M (2:1) 60–70 years25</td>
<td>M (8:1) 50–60 years</td>
<td>No known predilection (M:F 1:1; 18–85 years with no peak onset age60 28 32)</td>
</tr>
<tr>
<td>Immunotherapy-responsive (%)</td>
<td>Highly: 100%26 96%24 97%25 29 78%9</td>
<td>Highly: 100%37 86%26</td>
<td>Limited, and likely accounted for by referral bias and/or placebo effect: 27%28 46%26</td>
</tr>
<tr>
<td>Serological Epitope</td>
<td>Extracellular (both receptor docking and non-docking domains of this secreted protein)8 21 28</td>
<td>Extracellular domain8 9 28</td>
<td>Intracellular aspects (including Kv1 channels), and non-mammalian targets25</td>
</tr>
<tr>
<td>Rate in healthy controls</td>
<td><1%38</td>
<td><1%38</td>
<td>~5%2 6 28 39</td>
</tr>
<tr>
<td>Other associations/markers</td>
<td>Rarely thymoma <5%</td>
<td>Thymoma 20-50%, especially those with Morvan’s syndrome and neuromyotonia</td>
<td>Possibly malignancies33–36</td>
</tr>
<tr>
<td>Genetic HLA associations</td>
<td>HLA-DRB1*07:01 (~95%)26 32 40 41</td>
<td>HLA-DRB1*11:01 (~50%)32</td>
<td>Nil32</td>
</tr>
<tr>
<td>Evidence of pathogenicity</td>
<td>Functional blocking of LGI1–ADAM22 interactions21 42</td>
<td>Internalisation noted in some studies; pain reproduced in experimental animals43</td>
<td>Nil</td>
</tr>
</tbody>
</table>

ADAM, a disintegrin and metalloprotease; CASPR2, contactin-associated protein like-2; CNS, central nervous system; F, female; HLA, human leukocyte antigen; LGI1, leucine-rich glioma-inactivated 1; M, male; PNS, peripheral nervous system; VGKC, voltage-gated potassium channel.
THE TEST MATTERS: LIVE CELL-BASED ASSAYS AND THE LIMITED SENSITIVITY OF VGKC ANTIBODY TESTING

Our understanding of test systems for detecting pathogenic antibodies has evolved. As only antibodies that can ‘see’ their targets in vivo have clear pathogenic potential, we prefer to use ‘live’ cell-based assays that present only extracellular domains of antibody targets. These avoid the detection of non-pathogenic species and the potential for contamination by fixative, which can alter target epitopes and permeabilise cells.46 Many diagnostic centres use fixed cell-based assays, largely for convenience. However, live testing remains biologically intuitive; it has a higher sensitivity and specificity, and can resolve samples that routinely commercial kit testing assess as indeterminate.46–49 Such target-specific cell-based assays, where individual proteins are selectively expressed on the surface of live cells without detergent or fixative, are possible across the range of surface-directed autoantibodies, including LGI1 and CASPR2 (Figure 2A).8 These live cell-based assays have identified up to 15% of samples from patients with immunotherapy-responsive illnesses that have detectable LGI1 or CASPR2 antibodies but no VGKC-complex antibodies.50 51 Hence, direct LGI1 and CASPR2 antibody testing should be performed as first-line testing, not as a second-line reflexive test after a positive VGKC antibody result.

SO, IS THERE ANY VALUE IN VGKC ANTIBODY TESTING?

The above evidence strongly argues against VGKC antibody testing in routine clinical practice. Yet, these antibodies may have some limited value in the research setting. First, cohorts with positive VGKC antibodies may have high rates of malignancy (12%–47%), suggesting VGKC antibody as an onconeural marker.33–36 However, such findings probably reflect an inherent clinical referral bias. Indeed, other reports suggest comparable tumour rates among patients with double-negative VGKC antibodies and matched VGKC-negative controls.26 Second, swine abattoir workers frequently have detectable, typically double negative, VGKC antibodies.39 While this is only rarely a vocational issue, it suggests that inhaled aerosolised brain tissue may be a model to study human autoimmunisation, although with resultant non-pathogenic reactivities. Interestingly, this observation suggests an inherent liability to a loss of immune tolerance against VGKC-complexed proteins may account for the high rates of VGKC antibodies occurring as secondary effects of multiple disparate disease processes.28 52 53 Finally, some observations suggest double-negative VGKC antibodies may co-exist with cell-surface autoantibodies.23 30 54 In this clinical context, the surface-directed antibody is likely to be directly pathogenic. Indeed, the high reported rates of VGKC antibodies in some diseases, such as neuromyotonia, may provide a lead for identification of samples with co-existent pathogenic reactivities.

CONCLUSIONS: A CALL TO CHANGE CLINICAL PRACTICE

In summary, double-negative VGKC antibodies usually target intracellular epitopes and lack pathogenic potential. They form the majority of the results in routine VGKC antibody testing. Importantly, and in stark contrast to finding antibodies directed against LGI1 and CASPR2, they do not predict a response to immunotherapy. Their detection in heterogeneous, often non-immune, clinical disorders at similar rates to healthy controls casts doubt on their detection in classic autoimmune scenarios. For example, this background rate is likely to explain the common query that “my patient with Guillain–Barré syndrome / limbic encephalitis / Lambert–Eaton myasthenic syndrome has a double-negative VGKC of 1312 pM”. Further, the VGKC antibody radioimmunoassay is not an effective screening test for the key pathogenic autoantibody species as it misses ~15% of LGI1 or CASPR2 antibodies.

Taken together, the evidence from multiple international groups suggests there are no longer clinical reasons to test for VGKC antibodies. Stopping this test will reduce clinically irrelevant results, improve diagnostic accuracy and limit the use of unnecessary, potentially toxic, immunotherapies in patients. Most ‘non-immune’ syndromes referred to our specialist centre are associated with ‘double-negative’ VGKC antibody results. Yet, several laboratories continue to offer VGKC antibody testing, sometimes as a screening test to prompt LGI1 and CASPR2 antibody testing. Presenting local laboratories with the data and conclusions herein should encourage a change in testing regimens, towards patient benefit.

While this may be one of the final articles regarding VGKC antibody testing, work on LGI1 and CASPR2 antibodies will probably continue for several years, as the underlying immunology, autoantibody biology, and the molecular effector pathways still require clarification. These outputs could all impact on patient care by offering opportunities towards highly focussed examples of precision medicine. Nevertheless, for now, the evidence presented above should offer a marked improvement to the routine care of many patients each year.

Acknowledgements SRI is supported by the Wellcome Trust (104079/Z/14/Z), The UCB–Oxford University Alliance, BMA Research Grants—Vera Down (2013) and Margaret Temple (2017), Epilepsy Research UK (P1201) and by the Fulbright UK–US commission (MS–Research Society Award). The research was funded/supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC; The views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of Health). PW is supported by the UK NMO commissioning group. We thank Dr Antonio Berretta for his contribution to live neuronal staining images used within figure 2.

Contributors SRI and SM drafted the original manuscript. All authors designed the figures, and reviewed and edited the final manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests SRI and PW are coinventors on ‘A Diagnostic Strategy to improve specificity of CASPR2 antibody detection’. Ref. JA94536EP SRI is a co-applicant and receives royalties on patent application WO/2010/046716 (U.K. patent no. PCT/GB2009/01441) entitled ‘Neurological Autoimmune Disorders’. The patent has been licensed for the development of assays for LGI1 and other VGKC-complex antibodies. He has received honoraria from UCB, MedImmune, ADC Therapeutics and MedLink Neurology, and research funding from UCB, ONO and CSL Pharmaceuticals. PW is a named inventor on patents for antibody assays and has received royalties. He has received honoraria from Biogen Idec, Mereo BioPharma, Retrogenix and UBC; travel grants from the Guthy-Jackson Charitable Foundation.

Patient consent for publication Not required.

Provenance and peer review Commissioned; externally peer reviewed by Mike andi, London, UK.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Patrick Waters http://orcid.org/0000-0003-4142-2667 Sarosh R Irani http://orcid.org/0000-0002-7667-9748

REFERENCES

Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia.

Lai, Huijbers, Lancaster et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series.

Kalachikov, Strugova, Francavilla et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features.

Rodenas-Cuadrado, Pietrafusa, Fracavilla et al. Characterisation of CASPR2 deficiency disorder - a syndrome involving autism, epilepsy and language impairment.

Muona, Fukata, Anttonen et al. Dysfunctional ADAM22 implicated in progressive encephalopathy with cortical atrophy and epilepsy.

Savvaki, Panagiotaropoulos, Stamatakis et al. Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS interneurons and disrupted juxtaparanodes.

Polish, Salomon, Elhanany et al. Juxtaparanodal clustering of shaker-like K+ channels in myelinated axons depends on caspr2 and TAG-1.

Fukuta, Loverko, Iwanga et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy.

Sagane et al. Investigation of ADAM22, ADAM23 and ADAM11.

Schulte, Thumfart-J, Klöcker et al. The epilepsy-linked Lgi1 protein assemblies into presynaptic Kv1 channels and inhibits inactivation by Kvβ1.

Peti-Pedrol et al. Lgi1 in Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory.

Ramberger, Berraeta, MM et al. Distinctive binding properties of patient-derived monoclonal LGI1-autoantibodies determine pathogenicity.

Brain 2020;

Huda, Wong, Pettingill et al. An 11-year retrospective experience of antibodies against the voltage-gated potassium channel (VGKC) complex antibodies: experience from a tertiary referral centre.

Binks, Varley, Lee et al. Distinct HLA associations of LGI1 and CASPR2 antibodies.

Brain 2018;141:2263–71.

Tan, Flemm, Lennox et al. Clinical spectrum of voltage-gated potassium channel autoimmunity.

Neurology 2008;70:1883–90.

Dahm, Ott, Steiner et al. Seroprevalence of autoantibodies against brain antigens in health and disease.

Meessen, Klein, Pirko et al. Potassium channel complex autoimmunity induced by inhaled brain tissue aerosol.

Mueller, Förber, Prüss et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis.

Ohkawa, Fukuta, Yamasaki et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors.

Dawes, Weir, Middleton et al. Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability.

Bittar, Nascimento, Placebo et al. Placebo and nocebo effects in the neurological practice.

van Sonderen, Roelen, Stoop et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4.

