Orthoses for neurological ankles

Stephen Kirker

ABSTRACT

Patients with weakness or abnormal posture of their lower leg may benefit greatly from appropriate orthoses. This paper describes the sorts of problems that can be helped in neurological practice and the range of devices commonly used, and also highlights some of the factors influencing selection. With greater understanding of their use, clinicians will feel more confident about referring patients for early orthotic assessment.

INTRODUCTION

An orthosis is a device that supports residual function, whereas a prosthesis replaces that function. Splints and prostheses have been used for thousands of years, for example, on an Egyptian mummy’s foot from 2700 BC. Orthoses are now named according to the joints they work on: I will confine myself to ankle foot orthoses in neurological practice, and not consider diabetic complications, sports injuries and orthopaedic patients.

Orthoses can help many patients with poor control of the lower limb: there is often a biomechanical solution to a biomechanical problem, which can improve safety in standing and walking, while physiotherapy concentrates on motor learning. There has been concern that using an ankle foot orthosis (AFO) early after a stroke may impair recovery of normal muscle control; however, there is now good evidence that this is not the case and early referral to orthotics service of patients who had a stroke with mobility problems is recommended.

Foot drop in swing phase (while the foot is not in contact with the ground) is the most obvious indication for an ankle orthosis, but some patients may benefit more from improved stability during stance phase (while the foot is touching the ground, during part of which, it is taking all the body weight) by a ‘well-tuned’ AFO. This involves supporting the ankle and hence the knee at the best compromise of angles to stabilise the knee.
What neurologists need to understand outside their own speciality

Figure 4 Thin carbon fibre ankle foot orthosis (AFO). Assumes ankle rests in neutral position. Thin lamination, so mild support of dorsiflexion in swing. Stiffer than a plastic posterior leaf spring AFO, so a little more effect in stance.

Figure 5 Elastic foot lifter. Only helps in swing phase. Safe for patients to buy from internet. Works best with lace up shoes. Orthotix.co.uk.

Figure 6 Home made elastic foot lifter. Puppy collar and bungy cord.

Figure 7 Bespoke silicone ankle foot orthoses. Most often bought privately for aesthetic reasons. Dorset Orthopaedic Co Ltd.

Figure 8 Stiff carbon fibre ankle foot orthosis. Assumes ankle rests in neutral position. Thick lamination, much stiffer, so strong resistance to plantarflexion can overcome modest spasticity pulling into plantarflexion and inversion. Strong resistance to dorsiflexion allows ground reaction force to support knee extension in stance and may give some spring at toe-off.

during mid stance phase, while permitting knee flexion at the beginning of swing phase.

EVIDENCE TO GUIDE CLINICAL PRACTICE
When considering orthotic options, the first question is whether there is need for compensation or control during stance phase of gait. These functions usually require a bespoke moulded AFO. Only when there is...
What neurologists need to understand outside their own speciality

Figure 9 Custom moulded knee ankle foot orthosis. Moulded AFOs must be close fitting and cannot be used if oedema causes change in limb volume. This one also has a thigh corset; hence, it is a knee-ankle-foot orthosis. (KAFO) May allow use of several different pairs of shoes, unlike the caliper figure 13, made for the same patient to accommodate swelling.

no need for this, can one supply a simple stock device to support foot drop in swing phase.(table 1)

Published evidence emphasises the importance of optimising the alignment of AFO and footwear and the stiffness of the AFO for individual patients.7 Once this has been achieved, the available options may not permit a realistic comparison in a trial, or the patients become so highly selected that the results do not inform clinical practice.8 9 The great majority of trials recruit ambulant patients who had a stroke with weak dorsiflexors, relatively normal range of movement, and little or no spasticity. The other group that has been extensively studied is children with cerebral palsy, commonly with crouch gait.10 Systematic reviews conclude that AFOs work better than nothing, even many years after stroke, and there are similar results with AFO and functional electrical stimulation.

The specific neuropathology causing the biomechanical problem rarely affects the orthotic prescription, other than when the pathology anticipates rapid deterioration. Then, prompt supply of a device that is 80% of ideal is better than a 3-month delay in supply of a device that would have been 90% of ideal when prescribed, but which no longer works as the patient has changed so much in the interim.

SWING PHASE
Weak dorsiflexors causing foot drop in the swing phase of gait may be supported by simple elastic foot lifters, stock plastic or carbon fibre AFO of low stiffness, bespoke silicone or Lycra, or functional electrical stimulation. The major factor influencing selection is patient preference among devices that their National

Figure 10 Custom moulded ankle foot orthosis. Big heel build up to accommodate fixed ankle plantarflexion.

Figure 11 Pressure relieving ankle foot orthosis. Prevents any pressure on back of heel to prevent or relieve pressure sore. Maintains existing ankle range and can be bent to accommodate fixed plantarflexion.
Health Service will offer, or what they are prepared to buy privately. Appearance is the most common concern, but also important is restriction of movement that prevents them standing from sitting or getting up if they fall, comfort, feeling too hot, ease of donning and selection of footwear.

Functional electrical stimulation may be preferred over a rigid device because it is lighter, cooler, and does not take up much space in shoes; however, it is not commissioned in all services, so patients may have to travel to supraregional clinics to try this. Functional electrical stimulation does not work with peripheral nerve, muscle or tendon lesions, or with high muscle tone in plantar flexors or inverters. It does not compensate for contractures and does not enhance stability in the stance phase of gait, and requires more competence from the patient to use it than...
When higher forces are necessary to control the ankle and phase of gait, a bespoke moulded AFO is usually made. When higher forces are necessary to control the ankle and knee posture in stance, these must be applied over as wide an area as possible. Hence, moulded AFOs are designed to fit closely all around the sole, heel, sides of the foot and ankle, sides and back of lower leg.

When the size of the lower leg fluctuates due to edema or joint swelling, a close fitting moulded AFO should not be used because it cannot expand or contract to accommodate change in size. If edema can oedema or joint swelling, a close fitting moulded AFO should not be used because it cannot expand or contract to accommodate change in size. If edema can

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Swing phase problem</th>
<th>Stance phase problem</th>
<th>Primary objective of orthosis</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot slap, for example, tibialis anterior tendinopathy</td>
<td>None</td>
<td>Uncontrolled plantar flexion at initial heel contact, then stable</td>
<td>Stop slapping noise: reduce the force that tibialis anterior needs to apply to control plantar flexion</td>
<td>Modify sole of shoe by moving point of initial contact anterior, towards line of action of tibialis anterior, reducing moment of rotation (figures 1 and 2) or simple AFO (figures 3 and 4)</td>
</tr>
<tr>
<td>Minor calf shortening, stable ankle</td>
<td>None</td>
<td>Call discomfort in flat shoes, ascending slopes; knee hyperextension</td>
<td>Comfort in standing, prevent long term knee injury</td>
<td>Heel wedges inside normal shoes</td>
</tr>
<tr>
<td>Isolated low or normal tone foot drop, for example, some upper motor neuron lesions, peroneal neuropathy</td>
<td>Foot drop</td>
<td>Once foot flat on ground, stable</td>
<td>Prevent foot drop in swing</td>
<td>Elastic Lifter, posterior leaf spring (PLS), carbon fibre or silicone AFO (figures 5–7) functional electrical stimulation</td>
</tr>
<tr>
<td>Spastic plantar flexion but not inversion, little or no calf shortening</td>
<td>Foot drop</td>
<td>Once foot flat on ground, stable</td>
<td>Prevent foot drop in swing</td>
<td>Stiffer carbon fibre AFO=heel wedges (figure 8) functional electrical stimulation</td>
</tr>
<tr>
<td>Spastic plantar flexion and inversion, for example, late cerebral palsy, Duchenne muscular dystrophy</td>
<td>Spastic plantarflexion and poor hip and knee control</td>
<td>Initial contact with lateral foot, may not get heel to ground</td>
<td>Support foot in optimal position, compensate for lost range, facilitate knee flexion in late stance</td>
<td>Moulded AFO (figure 9)</td>
</tr>
<tr>
<td>Very weak plantar flexors, low tone, unstable ankle for example, Charcot-Marie-Tooth, Guillain-Barré syndrome, Duchenne muscular dystrophy</td>
<td>Foot drop, difficulty lifting weight of leg</td>
<td>Unstable base of support at ankle</td>
<td>Compensate for weak plantar flexors in stance, as well as foot drop in swing</td>
<td>Strong, stiff carbon fibre (figure 8) or moulded if loss of normal passive range, figure 9</td>
</tr>
<tr>
<td>Weak quadriparesis and ankle muscles, for example, poliomyelitis, Guillain-Barré syndrome</td>
<td>Foot drop, difficulty lifting weight of leg</td>
<td>Unstable base of support at ankle and knee</td>
<td>Stabilise knee in stance</td>
<td>AFO is aligned to use ground reaction force to keep shin upright and hence knee straight: strong, stiff carbon fibre (figure 8) or moulded if loss of normal passive range, figure 9</td>
</tr>
<tr>
<td>Marked loss of range, for example, fixed plantar flexion but within normal range for ‘standing on toes’ and inversion, for example, late cerebral palsy</td>
<td>Foot drop, difficulty lifting weight of leg</td>
<td>Unstable base of support due to small weight bearing area</td>
<td>Permit standing for transfers, therapeutic standing in frame</td>
<td>Stretch by serial casting + botulinum toxin, surgery. Moulded AFO with big heel build up (figure 10).</td>
</tr>
<tr>
<td>Fixed in extreme plantar flexion/inversion, for example, late after adult hypoxic brain injury</td>
<td>Only swing phase is when hoisted for transfers</td>
<td>No usable weight bearing area, unable to stand</td>
<td>Permit therapeutic standing in frame and keep feet on wheelchair footplates</td>
<td>Surgery, no AFO</td>
</tr>
<tr>
<td>Risk of calf contracture and heel sore while bed bound</td>
<td>Nil</td>
<td>Nil</td>
<td>Maintain ankle range</td>
<td>Pressure relieving or resting AFO (figure 11)</td>
</tr>
<tr>
<td>Leg swelling, volume fluctuation</td>
<td>Varies</td>
<td>Rigid AFO does not fit consistently</td>
<td>Usually control ankle in stance phase</td>
<td>External caliper or plastic AFO (figures 12 and 13)</td>
</tr>
<tr>
<td>Calf contracture</td>
<td>Varies</td>
<td>Cannot get heel to ground</td>
<td>Regain lost range</td>
<td>Contracture correction device, applying sustained calf stretch (figure 14)</td>
</tr>
<tr>
<td>Active patient, for example, running</td>
<td>Foot drop</td>
<td>Good function</td>
<td>Not break during high impact activities</td>
<td>Robust springy external AFO, Turbo Med (figure 13)</td>
</tr>
<tr>
<td>Poor ankle control, which responds to compression, perhaps improving proprioception</td>
<td>Variable foot drop</td>
<td>Adequate power but poor control</td>
<td>Optimise active muscle control</td>
<td>If positive response to Tubigrip, bespoke Lycra stocking (figure 15).</td>
</tr>
</tbody>
</table>

The orthotics options are shown in figures 1–15. AFO, ankle foot orthosis.

STANCE PHASE

When an orthosis aims to compensate for loss of normal passive range of movement, to resist higher muscle tone or to control ankle and knee movement during the stance phase of gait, a bespoke moulded AFO is usually made. When higher forces are necessary to control the ankle and knee posture in stance, these must be applied over as wide an area as possible. Hence, moulded AFOs are designed to fit closely all around the sole, heel, sides of the foot and ankle, sides and back of lower leg.

When the size of the lower leg fluctuates due to edema or joint swelling, a close fitting moulded AFO should not be used because it cannot expand or contract to accommodate change in size. If edema can be controlled with a compression stocking or diuretic...
medication, a moulded AFO may fit more of the time, but an external caliper, made for a single pair of shoes, is often the only option.

WHEN TO REFER TO AN ORTHOTICS SERVICE
It is safe for patients to buy or physiotherapists to supply devices to support foot drop during swing phase, as comfort and appearance are the main factors influencing patient satisfaction. However, AFOs to control the limb in stance phase require assessment and prescription by an orthotist due to the much higher forces involved and potential for making the situation worse, with skin breakdown, less stable gait, loss of confidence and musculoskeletal pain.

Referral for orthotic assessment is often late, for instance after waiting to see how much improvement occurs with time and physiotherapy. Orthoses may improve the effectiveness of early rehabilitation, for instance by allowing safe weight bearing through a weak limb for transferring with a Rotastand, and reducing the risk of injury during gait training. With greater understanding of their use, clinicians should feel more confident about referring patients for early orthotic assessment.

Contributors SK wrote this paper and took most of the photographs.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study does not involve human participants.

Provenance and peer review Commissioned; externally peer reviewed by Eleanor Marsh, Cardiff, UK.

ORCID iD
Stephen Kirker http://orcid.org/0000-0001-6383-2718

REFERENCES

