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Abstract
Artificial intelligence (AI) is routinely mentioned 
in journals and newspapers, and non-technical 
outsiders may have difficulty in distinguishing 
hyperbole from reality. We present a practical 
guide to help non-technical neurologists to 
understand healthcare AI. AI is being used to 
support clinical decisions in treating neurological 
disorders. We introduce basic concepts of 
AI, such as machine learning and natural 
language processing, and explain how AI is 
being used in healthcare, giving examples its 
benefits and challenges. We also cover how AI 
performance is measured, and its regulatory 
aspects in healthcare. An important theme is 
that AI is a general-purpose technology like 
medical statistics, with broad utility applicable 
in various scenarios, such that niche approaches 
are outpaced by approaches that are broadly 
applicable in many disease areas and specialties. 
By understanding AI basics and its potential 
applications, neurologists can make informed 
decisions when evaluating AI used in their clinical 
practice. This article was written by four humans, 
with generative AI helping with formatting and 
image generation.

Introduction
Artificial intelligence (AI) has become 
ubiquitous in the media and in our daily 
lives, from self-driving cars and voice 
assistants to sophisticated game-playing 
agents, internet search engines, facial 
recognition and AI chatbots. Its signif-
icant impact on industries such as trans-
port, finance, science and entertainment 
is undeniable; healthcare is poised as the 
next industry for transformation.

While AI-related health research has 
grown exponentially in recent decades 
(figure  1), its adoption into healthcare 
is still nascent due to the industry’s 
high-stakes and highly regulated nature. 
Important healthcare considerations 

include patient safety, data governance, 
data bias and ethico-legal implications of 
AI models. Additionally, the increasing 
interest in deep learning and generative 
AI models has led to growing concerns 
over the interpretability of AI models that 
are being developed.

Neurology has been at the forefront 
of AI innovation. Practising neurologists 
are key stakeholders in adopting AI into 
their specialty, AI could vastly improve 
patient care, but this needs to be imple-
mented safely, ethically and conscien-
tiously. It is crucial that neurologists gain 
an understanding of clinical AI and criti-
cally appraise the effectiveness, safety and 
value of the various AI software that they 
will eventually encounter.

This article serves as a practical guide 
for non-technical neurologists to under-
stand healthcare AI. By considering the 
factors discussed, clinical neurologists can 
help to shape the direction of AI devel-
opment and implementation in healthcare 
for years and decades to come.

AI and machine learning—
navigating the minefield of 
misused definitions
In 1955, John McCarthy coined the term 
‘Artificial Intelligence’ and defined it as 
‘the science and engineering of making 
intelligent machines’.1 More specifically, 
AI involves machines that demonstrate 
more-human-like intelligence; however, 
there is no universally accepted definition 
of human intelligence. An expert panel 
consensus in 1997 tried to define ‘intel-
ligence’ as involving ‘among other things, 
the ability to reason, plan, solve problems, 
think abstractly, comprehend complex 
ideas and learn from experience’.2 In 
the last century, these were usually rules-
based approaches, such as decision flow 
charts. Some are even implemented as an 
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Figure 1  Exponential increase in artificial intelligence (AI)-related publications in healthcare.34 A real-time dashboard using natural 
language processing to determine if a research publication claims to use AI at: https://aiforhealth.app/.

automated process in a smartphone app or triaging 
software. Most experts would not consider these 
systems to be AI as they are deterministic, overly 
rigid and prone to errors in missing context. They are 
essentially scripted flow charts with which clinicians 
are familiar as ‘protocols’ or ‘algorithms’ for choosing 
investigations or treatments. Most hospitals have 
plenty of these in the appendices of clinical guidelines, 
but often they are patchily adopted because they are 
too voluminous or complex.

Subsequent progress has led to other methods, 
including machine learning and deep learning 
(figure  2), which are probabilistic to handle infor-
mation processing and self-adjusting responses and 
behaviour to inputs, and significantly less scripted.

Machine learning is a subfield of AI that involves 
developing computer systems or models that enable 
computers to ‘learn’ from data and to improve their 
performance over time without being explicitly 
programmed. In other words, machine learning algo-
rithms can automatically identify patterns and rela-
tionships in data and use this information to make 
predictions. Machine learning algorithms can range 
from those derived from classical statistics, such as 
logistic regression, to complex deep learning algo-
rithms. Machine learning has been responsible for most 
of the recent progress in AI. By the 2010s, the term ‘AI’ 
had begun to take on a totemic significance, acceler-
ated by advertising of ‘the magic sauce’; it is easy to 
become cynical about the role of marketing when we 
see toothbrushes or sneakers being ‘AI-powered’.

Will AI replace neurologists?
Concern about job displacement dominates soci-
etal discourse about AI systems. Previous industrial 

technologies have primarily affected blue-collar jobs 
involving repetitive manual labour, but AI technolo-
gies have the potential to impact white-collar jobs.3 

4 However, for neurologists and clinicians, fears of 
job automation and resultant unemployment are 
unfounded, as a their task workflows and responsi-
bilities comprise many non-homogeneous activities. A 
neurologist’s work includes many categories of activity 
including:

►► diagnostic and multimodal interpretation for patient 
care (classical thinking of work of a neurologist);

►► clinical decision-making (eg, patient management that 
blends pragmatism and clinical evidence);

►► procedural tasks (eg, delivering medications such as 
neurotoxins, performing lumbar punctures); and

►► human communication (eg, relaying information such as 
breaking bad news, explaining the diagnosis and treat-
ment options).

As well as these core activities, modern industrialised 
healthcare includes many related activities including 
administration (eg, diagnostic coding, writing prescrip-
tions, clinical documentation), para-clinical activities 
(consensus-building with multidisciplinary teams), 
and research and education (eg, conducting clinical 
research, clinical audits, teaching peers and students).

Each of these activities comprises subtasks with 
different combinations of cognitive, communication 
and motor contributions, which are not easily segre-
gable. This means that even if an AI system could fully 
automate two or three steps, it would be very diffi-
cult to replicate all the different steps to a uniform 
degree, and therefore extremely improbable that AI 
would fully substitute for a neurologist. Instead, as AI 
automates or improves subtasks, a neurologist’s work-
flow will change as they use AI for different steps of 
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Figure 2  Venn diagram interpretation of the relationship 
between artificial intelligence (AI), machine learning and deep 
learning.

clinical activity. If implemented well, this process will 
help neurologists, who become the decision-making 
orchestrators and patient communicators.

The easiest parts to automate are those in the non-core 
activities. For example, AI could alleviate the administra-
tive burden, help to interpret investigations like imaging, 
summarise patient data and prepopulate forms. Voice 
dictation for letters is the best example of an activity that 
has evolved, from individual dictation into tapes for a 
personal medical secretary, to dictation into a typing pool, 
then to an online remote typing pool, and then to AI-pow-
ered dictation. This has replaced a medical secretary’s 
scribing activity but has not replaced their other roles. 
Recognising this, most clinical AI systems are designed to 
be ‘assistive’ rather than ‘autonomous’.5

While improving efficiency is a priority for health-
care institutions and economies, neurologists often 
wish to improve care for their specific individual 
patient. While this is easier to benchmark in highly 
standardised diagnostic disciplines such as radiology, it 
is much harder in clinical neurology, since the neuro-
logical history and examination is a semiscripted fully 
integrated cognitive–verbal–motor activity that relies 
on examiner skill and experience.6 7

A systematic review evaluating the diagnostic accuracy 
of the neurological examination in diagnosing lumbosa-
cral radiculopathy showed poor sensitivity and specificity 
in sensory examination (ranging between 0.61–0.63). 
Motor examination sensitivity was also poor (ranging 
between 0.13 and 0.61), while reflex testing was moderate 
(specificity ranging between 0.60 and 0.93).7 A study 
reviewing the performance of neurological examination 
in 46 patients with focal cerebral hemisphere lesions 
showed poor sensitivity, with only 61% being correctly 
identified.8 This high variability means that machine 
learning and feature-ranking algorithms will drop the 
individual findings from a traditional neurological 

examination as being noisy and unreliable. Consequently, 
most current AI technologies that include features from 
the clinical assessment use standardised scales, such as 
the National Institutes of Health Stroke Scale (NIHSS), 
Rankin, ADAS-Cog, MoCA, MMSE; these scales are 
designed to ‘grade’ impairments or function more consis-
tently, rather than to ‘diagnose’ pathology.

The consequence is that the less consistent compo-
nents of the clinical examination will remain human 
delivered while the more consistent aspects of clin-
ical evaluations will feed AI algorithms. AI algorithms 
will perform better at less clinician-dependent tasks 
(combining different multimodal findings, high-
dimensional image interpretation, biomarker tracking).

Case 1 Using stroke imaging AI
A 65-year-old man presented to an emergency depart-
ment at 03:00 with sudden onset right-sided weakness 
and difficulty speaking. He had last been seen well at 
17:00 the previous day. There was limited history and 
his NIHSS score was 12. He underwent urgent CT 
scan of head, with CT angiogram and CT perfusion 
scanning. A commercial AI product in the hospital CT 
scanner processed the images immediately in<10 s, 
outputting to the picture archiving and communica-
tion system and to the stroke neurologist’s smartphone 
(figure 3).

The stroke neurologist reviewed the AI report and 
images, which showed no early ischaemic changes 
(upper left image), a large vessel occlusion on the 
left M1 segment of the middle cerebral artery (upper 
right image) and a perfusion mismatch of 40 mL, indi-
cating a salvageable ischaemic penumbra. The stroke 
neurologist decided to thrombolyse immediately (the 
patient therefore received this treatment within 30 min 
of arriving in hospital). The AI data then prompted 
further discussion with an interventional neuroradiol-
ogist at a distant tertiary neuroscience centre whether 
or not to transfer the patient for thrombectomy.

Case 2 Using stroke imaging AI
A 50-year-old man presented with a left-sided hemi-
paresis and gaze deviation. His NIHSS score was 13 
at 6 hours from stroke onset. The stroke AI imaging 
algorithm again detected a large vessel occlusion 
and perfusion analysis showed no mismatch, and no 
reversible penumbra. The neurologist reviewed the 
source images and affirmed this. Thrombolysis was 
therefore unlikely to help and might have increased 
the risk of harm. The size of the infarct core meant 
that the patient was at risk for malignant middle cere-
bral artery syndrome, so he was closely monitored for 
early neurosurgical intervention if necessary (figure 4).

 

Cases 1 and 2 demonstrate the assistive nature of 
AI that automates only subtasks of clinical activity, 
assisting with neuroimaging interpretation in acute 
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Figure 3  : Screenshots of AI-generated reports of 
hyperacute stroke imaging to support clinical decision-making: 
haemorrhage detection (upper left); ASPECTS score for early 
ischaemic change (bottom left); large vessel occlusion on CT-
angiogram, and perfusion mismatch on CT-perfusion (right)

Figure 4  AI-generated segmentation of right middle cerebral artery large vessel occlusion with associated large core and minimal 
penumbra, indicative of little salvageable tissue

stroke and summarising complex data, with the neurol-
ogist taking responsibility for integrating clinical find-
ings and contextual aspects for final decision-making.

Both cases show the value of integrating AI as subtasks 
into a specific care pathway for a particular disease 
scenario. Like the above, many of the current health 
AI technologies are niche solutions that provide a very 
specific function as a subtask for a very specific clinical 
need. This works when clinicians have clearly defined that 
the problem being solved is safe for responsible adoption. 
This is less straightforward for other uses of AI and AI 
products, especially for systems claiming to be general 
purpose across many different clinical scenarios.

Examples of AI uses being tested in 
neurology
The healthcare areas in which AI are the most devel-
oped and ready for use are computer vision (eg, 
neuroradiology) and natural language processing (eg, 
extracting meaning and understanding from text). We 
highlight a few areas in which machine learning is 
being applied in neurology.

Computer vision/medical imaging analysis
AI-supported analysis of stroke imaging was one of the 
earliest uses, with multiple algorithms often built within 
a product suite: (1) to detect early ischaemic change 
on CT, such as the ASPECTS scores (Alberta stroke 
program early CT score); (2) to detect haemorrhage; 
(3) to detect large-vessel occlusion on CT angiograms; 
and (4) to evaluate ischaemic penumbra on CT-per-
fusion imaging. Several of these commercial products 
are already widely used in UK hospitals, for example, 
Rapid.AI, Brainomix and ​Viz.​ai (figure 5). These can 
accelerate scan interpretation, especially out of hours 
and in emergency departments, and when located far 
away from neuroradiological centres. The models can 
flag up imaging abnormalities in real time, raising 
alerts for intervention in stroke, and thereby reducing 
the door-to-needle time. Real-world evaluations show 
reasonable performance heavily weighted towards 
high sensitivity but low specificity, and high false posi-
tive rate.9 The next generation of AI algorithms will 
not just detect but will aim to prognosticate.10 Other 
approaches include use in glioma imaging markers11 
and volumetric and lesion analysis for neurodegenera-
tion, epilepsy and multiple sclerosis. Most approaches 
rely on ‘segmentation’, or highlighting, a region of an 
image with a label to allow further interpretation by a 
clinician.

A particularly practical use is general anomaly detec-
tion algorithms.12 These are trained to detect that an 
image is not similar to an average or ‘normal’ image, 
and can bring it to the neuroradiologist’s attention, 
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Figure 5  Screenshots of artificial intelligence (AI)-generated reports of hyperacute stroke imaging to support clinical decision-
making: haemorrhage detection (upper left); ASPECTS score for early ischaemic change (bottom left); large vessel occlusion on CT 
angiogram and perfusion mismatch on CT perfusion scanning (right).

potentially forming an important tool for triaging and 
managing volume work.

Machine learning in electronic health records
Electronic health records contain self-generating real-
world patient data as well as curated data formats in 
research study case report forms. Machine learning 
works on these tabulated data to perform outcome 
prediction, diagnostic classification, anomaly detec-
tion, risk estimation, triaging and pathway optimisa-
tion. The simplest form uses a set of inputs, and then 
outputs a risk score, analogous to traditional clinical 
risk calculators such as NEWS2 or Sepsis Scores. 
While simple in concept, most published machine 
learning risk models are underpowered, poorly gener-
alisable and simply badly trained.13 Machine learning 
algorithms such as random forest and decision trees 
can predict prognosis in patients with traumatic brain 
injury.14 While there is some marginally improved accu-
racy compared with traditional warning scores,15 the 

systems are often overly complex; it is easy to under-
estimate the scale and quality of the data required for 
generalisable algorithms.

The main (but often overlooked) limitation of elec-
tronic health records data is their quality; many UK 
hospital electronic health records do not use inter-
nationally standardised data formats for tabulated 
data. Healthcare professionals often create electronic 
health records forms using poorly standardised data 
entry in pursuit of short-term clinical utility for audits 
or checklists. Furthermore, the burden of completing 
forms might lead clinicians to leave blank fields or to 
mis-enter data, and risks causing clinician burnout. 
The result may be useless and unusable data, unless 
clinicians concurrently use language AI (or natural 
language processing).

Natural language processing
Natural language processing is a branch of AI that aims 
to use machines to interpret, understand or generate 
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Figure 6  The use of natural language processing to detect 
words and phrases and to develop ability to allow computable 
semantics, that is, computers can read meaning (top). The 
development of large language models trained on NICE 
guidelines and healthcare data by the authors’ team (bottom).

human language. The world took notice of this in 
December 2022, when OpenAI announced ChatGPT, 
though natural language processing technology has 
been used and tested for many years. The initial hype 
was about its performance in answering examination 
questions, and now many are speculating about its uses 
in healthcare.16 This requires careful consideration of 
the risks if directly involving patients.17 The greater 
short-term value to a clinician is in its help in writing 
letters, and efficiently summarising information.18

Separately from large language models for conversa-
tions, natural language processing is used for various 
activities. Our National Health Service (NHS)-grown 
group (CogStack) uses natural language processing in 
various clinical workflows including machine-learning 
enabled clinical coding of stroke comorbidities,19 
whole hospital analysis of disease comorbidities,20 
tracking disease trends,21 temporal modelling of 
patient trajectories using natural language processing 
document text22 and providing National Institute 
of Health and Care Excellence (NICE) guideline-
based advice (figure  6). Over time, natural language 
processing will probably be integrated into natural 
language processing-based structured data systems as 
well as being combined with machine vision tasks, 
such as evaluating radiology reports.

Case 3: Finding missing cases using language AI
Genomic sequencing is made available by Genomics 
England for specific rare diseases, syndromes and 
cancers; neurologists may use this service for cases 
they see. A few have kept patient lists on a spread-
sheet or logbook. One senior consultant used to have 
dozens of such cases, but many have been discharged 
after making no genetic diagnosis, with no log of suit-
able cases.

Natural language processing was applied to the 
entire hospital health record to find patients where 
the neurologist mentioned a possible cause in a clinic 
letter but never found the diagnosis. Search terms were 
applied as well as phrases to identify phenotypes and 
syndromes without any diagnosis. Patients were ascer-
tained including many ‘lost to follow-up’, whom the 
neurologists now contact for genetic sequencing for 
diagnosis.

A similar approach was also applied to finding 
women of childbearing age who were taking sodium 
valproate. Initially, epilepsy clinics were manually 
audited, but with several non-epilepsy indications for 
sodium valproate, so this natural language processing 
was applied hospitalwide in an afternoon, saving 
months of manual auditing.

Most recently, we used an AI-boosted technique 
during an upgrade of an electronic healthcare records 
system at two large London NHS hospital trusts (Kings 
College Hospital and Guys & St Thomas Hospitals), to 
detect diagnostic codes in outpatient letters. We then 
inserted these into a new electronic healthcare records 

system for clinician reconciliation into internationally 
standardised problem lists. This task, involving >400k 
diagnosis codes, would have taken 2 years if done 
manually.

Voice analysis algorithms
Speech-to-text software can be used to autodictate or 
summarise consultations and so reduce documenta-
tion burden; this is widely used for consumer dicta-
tion systems like Siri in Apple smartphones, Alexa in 
Amazon, and in healthcare, Dragon Dictate by Nuance 
such that it no longer seems astounding. Neurally based 
AI models such as Whisper have been freely released 
so that anyone can tune a voice recognition model. In 
disease detection, preneural network approaches with 
signal-processing algorithms were piloted 10 years 
ago.23 Neural network ‘AI’ has substantially increased 
accuracy in detecting Parkinson’s disease24 and Alzhei-
mer’s disease,25 but large-scale testing has not yet been 
completed.

Video, movement and remote evaluations
There has been substantial work on this area in health-
care but most are small-scale pilots. Small-scale proj-
ects have tested video analysis of tremor, motion 
detection in seizures and movement disorders, and 
tracking using sensor remote devices. This will change 
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very soon, as technology industry and the open-source 
community have built huge datasets of human motion 
data (called ‘poses’) outside of healthcare. Healthcare 
teams supplemented by the acceleration of consumer 
hardware for motion capture will soon be able to clas-
sify subtle aspects of motion using AI.26 In neurology, 
early efforts will be to detect and classify types of 
abnormal gait from video footage as well as other 
concurrent information from video (eg, pulse rate, 
respiratory rate, audio) and other on-patient sensors. 
It remains to be seen if this is the right approach for 
technological translation into neurology.

Neurophysiology and AI
Machine learning has shown promise in automating the 
detection of seizure activity in electroencephalogaphic 
(EEG) recordings.27 28 These rely on highly curated public 
datasets and its generalisability remains to be determined 
systematically. Alternative approaches have also been 
explored using machine-learning algorithms to inter-
pret EEG signals for brain–computer interfaces, which is 
hoped might provide adaptive technologies to improve 
independence of people with neurodisability.29 AI-as-
sisted analysis of electromyography signals has also been 
attempted in motor neurone disease.30 Nonetheless, there 
is lack of standardisation in the use of AI in the field of 
neurophysiology, so most of the described are still in the 
proof-of-concept phase and some way from wider real-
world application.

Histopathology and AI
The application of AI in digital histopathology is 
another form of machine vision in the automated 
analysis of histopathology slides. The most obvious 
use would be in glioma or brain tumour specimens. AI 
models can be trained to detect and quantify specific 
pathological features accurately, such as amyloid 
plaques or Lewy bodies, which indicate these diseases.

The process of doing this training needs semantic 
sophistication and relies on labelling images carefully 
for the ‘features’ rather than classifying into pathology 
versus non-pathology (figure 7). It is helpful to label 
with clinically recognised grading systems for mitotic 
activity, nuclear atypia and microvascular proliferation 
in neurooncology, as an AI model would learn the rele-
vant features, rather than mislearn other aspects of the 
images (often related to hospital-specific preparations). 
AI adds the most value to high-volume specialties.

Biomarker discovery and proteogenomics
This is an exciting area of new discovery and future 
treatments. Machine learning approaches speed up the 
interpretation of genomic, proteomic and biomarker 
information. The most significant impact is Google 
Deepmind developing an AI model for predicting protein 
folding, called Alphafold.31 This has had significant 
impact in structural biology, including drug discovery, 
protein function modelling, protein design and target 

prediction. Another area of development is synthetic 
chemistry, where molecular designs are imagined using 
AI, and then best fit for molecular targets are found. In 
neurology, a knowledge-based approach was used to 
identify novel defective RNA-binding proteins in amyo-
trophic lateral sclerosis.32 Similarly, machine learning has 
identified prognostic biomarkers in people with high-
grade glioma.33 The pace of preclincial development is 
accelerating as AI-designed drugs by biotech companies 
such as Exscienta have begun or completed phase I clin-
ical trials in oncology and immunology.

Most of this biomarker work does not directly affect 
clinicians until new medicines and therapies (discov-
ered with AI support) become available after relevant 
regulatory approvals.

Machine learning—how does an 
algorithm or model learn?
For a machine learning model to ‘learn’, it must be 
provided with data; it can then generate patterns based 
on the data inputted. The main methods of learning 
are: supervised, unsupervised, reinforcement and 
deep learning figure 6. The choice of learning method 
depends on the nature of the problem and the avail-
ability of labelled data. It is essential that training 
data are in the correct format, type and quality for 
the model to learn. Clinicians typically underestimate 
the amount of data required, which is usually a data 
volume of tens of thousands to billions. Most machine 
learning advances in medicine have come through 
supervised learning, although recently unsupervised 
deep learning methods have attracted great interest as 
they need minimal or no labels.

►► Supervised learning: this involves training a machine 
learning model with a labelled dataset, where there are 
known input and output variables. The model estab-
lishes a relationship between input and output varia-
bles to predict unseen data accurately. For example, in 
predicting Parkinson’s disease, supervised learning can 
be used to train a machine learning model on a dataset 
of MR brain scans that have been labelled as being 
either healthy or as having Parkinson’s disease. The 
model learns to recognise data patterns that differentiate 
healthy and diseased brains, enabling predictions about 
new, unseen scans.

►► Self-supervised (or unsupervised) learning: this involves 
training the model on an unlabeled dataset where output 
variables are unknown. The model identifies patterns 
or structures in the data by implementing clustering 
or dimensionality reduction techniques. For example, 
a machine learning model can be trained on a dataset 
of clinical records for patients with Parkinson’s disease, 
without any explicit labels. The model can then identify 
common patterns of symptoms among patients and use 
them to cluster and identify distinct clinical subtypes of 
Parkinson’s disease.

►► Reinforcement learning: this involves training the model 
through trial and error by receiving feedback in the form 
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Figure 7  Example of a software tool for labelling a Lewy body, to train AI-automated labelling of Lewy bodies on central nervous 
system histopathology (image produced by author).

of rewards or penalties while interacting with an envi-
ronment. This approach has famously achieved super-
human level performance in games such as chess, Go and 
other board games. A clinical analogy would be a deep-
brain stimulation system that is ‘rewarded’ by reducing a 
patient’s parkinsonian tremor. By learning and adapting 
to patient’s feedback, the model can learn to alter the 
stimulation parameters that are tailored to the patient’s 
individual needs.

The above paradigms describe how to train algo-
rithms, and the specific algorithms are wide-ranging 
mathematical constructs, example: Support Vector 
Machines, Random Forests, Logistic Regression, 
XGBoost. Since 2020s, Artificial Neural Networks 
and Deep Learning are the dominant types. These are 
inspired by neuroscience—where digital neurones are 
‘activated’ based on a summation of its inputs from 
other digital neurones, analogous to a biological 
neurone reaching a threshold to produce an action 
potential. These digital neurones are connected in 
layers modelled after the visual neocortex, and the 
degree to which one neurone influences improves 
through machine learning, for example, machine 
vision to understand what a picture sees (figure 7).

The engineering of many layers of neurones allows 
very complex mathematical processes to be accom-
plished and to represent data in very abstract forms. 
A detailed survey of the different types of artifi-
cial networks is beyond the scope of this article, but 
interested readers can review online encyclopaedias 
(https://www.asimovinstitute.org/neural-network-​
zoo/). Newer architectures such as transformers, 
autoencoders and diffusion models combine many 
of these into very complex architectures. As neural 
networks are computationally demanding, those with 
access to nanoscale AI-chip technologies physically or 
through data centres or the cloud dominate the space 
as they can produce, fine-tune and use new AI models. 
Farsighted NHS organisations and universities have 

invested in these specialised AI-computers and internal 
infrastructure.

Machine learning versus traditional statistics
The line between traditional statistical methods and 
machine learning is blurred. Many machine learning 
techniques build on classical statistical methods to 
create intelligent and adaptable models. In general, 
machine learning refers to models and algorithms that 
learn and adapt to new data by adjusting their weights 
and biases; this is distinct from traditional statistical 
methods that tend to rely on prespecified models 
modelled to fit the static data.

A key difference is the intended goal; classical 
medical statistics are used primarily to analyse data to 
uncover patterns, relationships and trends. In contrast, 
machine learning is focused on developing algo-
rithms and models that learn to incorporate the above 
patterns, relationships and trends to make predictions 
or decisions based on that learning. Machine learning 
is also more suited to having many variables (dimen-
sions) of input data (thousands to millions of pixels 
in images, millions of characters or words in text) 
whereas classical statistics are often limited by the 
degrees of freedom and repeated hypothesis statistical 
testing.

Critical appraisal of machine learning 
and AI models
New ‘state-of-the-art’ machine learning models are 
being released on a weekly basis in code reposito-
ries, preprints, peer-reviewed research articles and as 
commercial products. At this pace, it may seem hard 
to keep up with each new iteration of technology. 
However, all the new models are generally built on 
similar architectures or recipes with small changes that 
lead to a difference in benchmarking performance.

Numerous international frameworks have been 
developed for reporting clinical studies on AI 
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Figure 8  Paradigms to produce machine learning.

development (eg, CONSORT-AI, STARD-AI, SPIR-
IT-AI, TRIPOD-AI, PROBAST-AI, DECIDE-AI),13 

34–38 but there is variable compliance on this especially 
with the number of different frameworks. For a clini-
cian, the machine learning paper should then review 
the following:

1. Understanding the problem: the first step is to 
understand the problem the AI model is attempting 
to solve. Is this a real clinical problem that clinicians 
encounter? Does it specifically require AI to solve? 
Is the problem niche or widespread? A local depart-
mental problem may be due to structural issues or 
human factors, and so creating an AI software to solve 
this will be costly, inappropriate and will not scale 
across the organisation.

2. Reviewing the methods and source training data: 
the characteristics and quality of the training data used 
to produce the AI model is key (see Jargon Box). An 
AI model attempts to learn the patterns and trends 
within its training data, and so the quality of data is 
often more important than the type of AI architecture 
used. Are there intrinsic biases within the data (ie, 
do the data adequately mimic prevalence of clinical 
scenarios? are only the appropriate biases captured in 
the training data?).

3. Evaluating the performance: the results of the AI 
model should be evaluated using appropriate perfor-
mance measures. Datasets are usually split into a test 
set and a training set. The model performance is first 
evaluated on the training set, and then on the test set 

 on A
pril 19, 2024 by guest. P

rotected by copyright.
http://pn.bm

j.com
/

P
ract N

eurol: first published as 10.1136/pn-2023-003757 on 17 N
ovem

ber 2023. D
ow

nloaded from
 

http://pn.bmj.com/


10 of 14 Au Yeung J, et al. Pract Neurol 2023;23:476–488. doi:10.1136/pn-2023-003757

Review

Figure 9  The base design of artificial neural networks. An 
image is broken up into pixels and the brightness of each pixel 
is fed into a digital neurone in layer 1 of the artificial neural 
network. The digital neurones are connected to layer 2 digital 
neurones, and if a certain threshold of activation occurs, the 
layer 2 neurone activates as well, which then leads onwards 
to layer 3 and layer 4. The amount of activation needed to 
activate the next layer is called the ‘model weights’ and these 
weights are generated through a process similar to long-term 
potentiation in biological neurones (following the Hebbian 
Rule). Each layer then produces an abstraction of the preceding 
layer, such that lines and edges are captured, followed by 
whole shapes and polygons, finally ending in an output layer.

(to which the model was not exposed during training). 
An AI-driven diagnostic algorithm will need sensi-
tivity and specificity data and a standard area under 
the receiver operator characteristic curve analysis 
(see jargon box). Beyond these simple performance 
measures, the model needs additional performance 
benchmarking against established benchmarks (eg, 
model performance compared with standardised 
retrospective datasets, benchmarking against expert 
clinicians). As gold standard, a prospective real-world 
multisite trial would appraise how the model performs 
in the real-world clinical setting and test generalis-
ability across healthcare settings.

4. Understanding implementation dependencies in the 
real world: an additional consideration is the cost of 
implementing and maintaining AI in the real world. Often, 
there are dependencies and critical bits of infrastructure 
or digital ecosystems that render the system not repro-
ducible in practice. In the case of AI models, poor perfor-
mance could be due to issues with poor generalisability of 
the AI model, lack of compatibility with hospital IT infra-
structure, barriers to data access and confidentiality or 
poor workforce adoption due to model complexity. This 
is often not mentioned in research studies, and an expe-
rienced clinician would want more prospective machine 
learning/deep learning clinical trials that evaluate the 
model’s real-world effectiveness prospectively.39

5. Looking beyond the model: even an AI model 
with a perfect performance will not necessarily be 
adopted. Workforce adoption relies on many factors. 
First, an understanding and trust of the technology, as 
it is much easier to trust a transparent model than a 
‘black-box’ model. Second, the AI application needs 
to be implemented seamlessly into a neurologist’s 
workflow so that it does not detract and burden 

their existing work. This is no easy task, but requires 
an in-depth understanding of clinician workflows, 
healthcare ecosystem and attention to user interface 
design. Furthermore, just like any other technology 
in health services, it needs to demonstrate improved 
health outcomes, reduced costs and improved patient 
and clinician satisfaction. Given the finite resources of 
healthcare systems, it is only logical that it adopts and 
maintains interventions that are cost saving.

Software development and evidence evaluations 
have phases that are analogous to clinical drug 
trials (table  1). Various NHS AI Lab and NIHR 
clinical trials funding schemes already mirror this 
format (https://transform.​england.nhs.uk/ai-lab/
ai-lab-programmes/ai-health-​and-care-award/
ai-health-and-care-award-winners/).

How does AI software go from ‘bench’ to 
‘bedside’?
Most clinicians would not confuse the use of AI-based 
systems in consumer or general population with patient 
care; there is often a grey area between the use of AI 
in healthcare and the use of AI for healthcare. Using 
spell-checking AI for emailing a colleague or dictating 
an outpatient letter is very different from using AI in 
delivering care to patients, with its substantially more 
regulatory safeguards.

AI technologies used for healthcare are considered 
to be ‘software as medical device’ (SaMD), and so 
must comply with a series of regulatory requirements. 
In most cases, the AI is a non-adaptive algorithm that 
is in a frozen state of learning (the algorithm’s internal 
parameters and performance do not change over 
time); adaptive machine learning algorithms remain 
an evolving regulatory landscape.

The crucial first step in the regulatory approval 
process is to define the intended use of an AI algorithm 
or SaMD. This involves describing the device’s specific 
purpose, function and target population. The intended 
use statement serves as the basis for classification, eval-
uation and approval of the SaMD.

There are also different approvals based on the regu-
latory domains; the Conformitè Europëenne marking in 
Europe, the Food and Drug Administration for the USA 
and the UK Conformity Assessment marking for the UK. 
In the UK, this is regulated by the Medicines and Health-
care Products Regulatory Agency (MHRA) approval. 
The MHRA regulates SaMD in the UK in accordance 
with principles of safety, performance, quality, trace-
ability and vigilance. Importantly, the MHRA requires 
clinical evaluation of the safety and performance of a 
product (premarket and post market) https://www.gov.
uk/government/publications/software-and-artificial-in-
telligence-ai-as-a-medical-device/​software-and-artifi-
cial-intelligence-ai-as-a-medical-​device. Other applicable 
quality standards include ISO13485 (and DCB0129), 
which provides clinical safety assurance from the device 
or software manufacturer for distribution.
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JARGON BOX: Data considerations for artificial 
intelligence (AI)

Data quality is crucial for the training and validation as 
well as for implementing machine learning models. Data 
of good quality have been sorted, standardised, cleaned 
and contain all the attributes necessary for the model’s 
learning process.

Accuracy and relevancy: training data should provide 
meaningful and accurate information to the model that 
reflect the real world (so the model can capture the data 
trend correctly rather than introducing noise or bias).

Consistency: for supervised training datasets, human 
labellers must label data consistently for the model to learn. 
Interlabeller agreement can be a useful metric to evaluate 
if labellers are consistent using the same approach.

Ground truth/gold standard: machine learning algo-
rithms need to be trained on outcomes with minimal incon-
sistency and interobserver variation, to generate outputs. 
This is often not available in many aspects of neurology 
where features and diagnoses are opinion based.

Standardised and interoperable: healthcare data 
standards allow data recorded in one system to be inter-
rogated by another system. Good quality data used in 
AI should follow data standards so that any AI model is 
interoperable. Examples of healthcare data standards 
include SNOMED-CT, HL7v2, FHIR, DICOM and LOINC.

Representativeness and data diversity: the data 
should represent the target population or the specific 
context in which the AI model will be deployed. It should 
cover the diversity of the data distribution to avoid biased 
or skewed models. This can be challenging in rare diseases.

Completeness: data should be complete, containing 
all the necessary information required for the AI model 
training task. Missing or incomplete data can hinder the 
model’s performance. This can occur if hospital’s electronic 
health records are siloed or fragmented.

Data privacy and information governance: health 
data are privileged special category data, and is governed 
by multiple legislations, in the UK specifically by the Data 
Protection Act (2018), the Health Service (Control of 
Patient Information) Regulations 2002, and Common Law 
of Confidentiality. Data protection and information secu-
rity measures also apply.

JARGON BOX: Measures of AI model performance

  AUROC (area under the receiver operator charac-
teristic curve) is a metric of performance used to evaluate 
the quality of binary classification models, which measures 
the ability of the model to distinguish between positive 
and negative classes. A score of 1.0 is perfect.

Precision (also known as positive predictive value) 
is a measure of a model’s accuracy in identifying true posi-
tives out of all the positive predictions made by the model. 
A score of 1.0 is perfect.

Recall (also known as sensitivity) is a performance 
metric that measures the ability of a model to identify all 
positives in a dataset. A score of 1.0 is perfect.

F1 score is a combined measure of a model’s preci-
sion and recall, which provides a balanced evaluation of a 
model’s performance. A score of 1.0 is perfect.

Overfitting is where an algorithm is overtrained on too 
few data; initial accuracy measures are absurdly high but 
the algorithm fails to perform as well on other datasets 
from other hospitals.

Benchmarks in standardised datasets are established 
and often large datasets which groups create for machine 
learning researchers to train and evaluate performance of 
new machine learning models. This includes imaging data-
sets such as Chest X-ray14,41 multimodal electronic health 
record datasets such as MIMIC,42 question-answering 
datasets such as MedMCQA.43

Benchmarks in real-world evidence where the 
performance is evaluated against real world

Once an SaMD meets regulatory requirements 
for distribution, its use in clinical care and clinical 
systems requires distinct regulatory compliance from 
the healthcare providers, specifically ISO14971 (and 
DCB0160) compliance for clinical safety and risk 
management.

Finally, to achieve clinical impact, it is critical to 
integrate such AI-powered software into clinical IT 
systems. Integration means connecting all the rele-
vant aspects of the software into existing systems 
so that data flow seamlessly with accurate data 

transformations. Often, and especially pilot projects, 
this integration is not done as it is too expensive or too 
laborious to perform for a time-limited project. It may 
also sometimes be too niche for a hospital IT dept to 
expend resources on doing especially if the software 
is not designed around international digital standards. 
This failure of integration to international standards is 
the most common obstacle to many digital projects in 
healthcare (and neurology).

For clinical impact, health AI should be an organisa-
tion-led exercise (not as a single individual researcher 
or clinician) and requires collaboration and conver-
gence of people outside of traditional healthcare 
professions, including engineers. Once implemented, 
it is important that the deployed AI algorithm is then 
reviewed regularly for data and model drift, as well 
as performance and bias. AI software needs constant 
tending and ongoing overhead costs (possibly more so 
than traditional software).

Future challenges
Healthcare has undergone a digital transformation in 
the last two decades, and patients generate an enormous 
amount of data with each clinical visit in the form of 
free text, images and health data. AI models thrive with 
large amounts of data, which reveal complex patterns 
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Table 1  Comparison of simplified phases of evaluation of a drug versus artificial intelligence (AI) in healthcare

Study phases Drug AI in healthcare44–46

Phase 0 preclinical/discovery Compound/drug target development
Preclinical/lab studies

Proof-of-concept studies (usually on a static/
retrospective dataset)
Algorithm development and performance metrics 
evaluation

Phase I safety Safety assessment
Evaluating metabolism and optimal 
therapeutic dosage
Adverse effects

Feasibility to implement into an existing workflow
‘Real world’ evaluation of algorithm performance
Safety evaluation

Phase II efficacy and safety Prospective efficacy and safety evaluation/
clinical trial (in a larger study group, >100 
patients with controls)

Prospective efficacy and safety evaluation/ clinical 
trial (in a larger study group, potentially multi-
departmental or hospital-wide)

Phase III therapeutic efficacy Efficacy and safety clinical trial (>1000 
patients with controls)
Medium to long term adverse event 
monitoring

Efficacy and safety clinical trial (potentially 
hospitalwide or multitrust, with controls)
Medium-term to long-term performance evaluation 
compared with control/existing non-AI workflows

Phase IV safety and effectiveness Postmarket surveillance Postdeployment surveillance

Key points

►► Artificial intelligence (AI) is a general-purpose 
technology.

►► Neurologists will not be replaced, but will orchestrate 
these different assistive AI tools for different tasks.

►► AI software use is most mature in hyperacute stroke, 
and prototypes proliferate in most other neurology 
specialties.

►► AI software is regulated as a ‘Software as a 
Medical Device’ (SaMD) and there are international 
frameworks of evidence of benefit.

►► It is essential to have high-quality data 
standardisation.

and trends with the potential to transform patient care 
in neurology. Understandably, there is significant hype 
around AI in both the news and academia declaring 
that AI performance has surpassed clinicians and that AI 
will soon replace doctors. This invariably often wilfully 
neglects to elaborate on the many subtasks involved in the 
work of a neurologist and other doctors.

Many significant key challenges lie ahead that are 
beyond the scope of this article. These challenges 
include tackling inequalities and data biases in AI. 
There are also large discrepancies between continents 
and their AI expertise, capital and data access to train 
large AI models. This means that a few big players 
tend to dominate the AI conversation and direction 
of development. Ethical concerns around AI-related 
medical errors require careful thought; current AI 
systems are merely assistive, so decision-making and 
responsibility remain with the clinician. However, if 
we were to advance to autonomous AI systems, how 
would we build a safe system and who would take 
responsibility when mistakes occur? Furthermore, AI 
models should be trained and deployed in ways that 
protect patient data and privacy. Patient engagement 
groups may help guide development of medical AI 
software. Finally, the advent and rapid marketing of 
proprietary large language models such as ChatGPT 
(OpenAI) and Bard (Google) have transformational 
potential in healthcare, but can lead to unintended 
risk of misuse or abuse. Some experts have called for a 
temporary pause in the development of powerful large 
language models and a closer focus on AI safety.40

Many neurologists are probably already using AI 
systems in their day-to-day life outside of medicine, 
and many will also already be using some forms of 
healthcare AI in their clinical practice. Healthcare AI 
is an applied science, and so relies heavily on real-
world applications by front-line staff. Practising 
neurologists will be key to adopting AI in healthcare, 
with a crucial role to ensure that it is implemented 

effectively, safely and responsibly. Doctors that can 
use AI systems safely will likely eventually displace 
those who do not. Neurologists must embrace 
these technologies to shape the way AI is used in 
neurology, and not let these systems be designed only 
by technologists.

Further reading
Due to the rapid nature of AI development, most mate-
rial is outdated by the time it is published in textbooks 
or journals. Most up-to-date AI developments are 
on digital publishing platforms such as blogs, online 
gazettes (​Substack.​com, ​Medium.​com or Towards 
Data Science) articles), podcasts and online video 
tutorials. To get started, we recommend the following 
resources:

►► Kings Innovation Scholars, Big Data and AI skills for the 
NHS health workforce https://innovationscholars.er.kcl.​
ac.uk/.

►► Andrew Ng’s Machine Learning course on Coursera. 
This will cover fundamentals of ML and mathematics 
that underlie ML models https://www.coursera.org/​
specializations/deep-learning.
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►► Both MIT and Stanford have online courses freely avail-
able on YouTube, you may want to view MIT Introduc-
tion to Deep Learning 6.S191 or Stanford CS230: Deep 
Learning.

►► AI for healthcare substack, short blogs with natural 
language processing focus from our AI group: https://​
aiforhealthcare.substack.com/.

For those seeking technical literacy, we recom-
mend learning about Python, Git repositories, shell 
scripting, Docker containers, REST API’s and cloud 
environments. As with learning a foreign language, 
this will take 9–12 months of immersion to get 
basic literacy. Proficiency or mastery takes many 
years and is as much a life-long learning process as 
medicine.
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