Immunotherapy guidelines in neuromuscular diseases

Quick guide for Physicians

University College London Hospitals W/HS

NHS Foundation Trust

General recommendations

University College London Hospitals W/rS

NHS Foundation Trust

Informed consent

* Discussion of adverse events: www.gmc-uk.org/guidance

1.	Inform patients of all potential minor adverse events if they occur frequently (1/10-1/100)
2	In form patient of any serious adverse event even if likelihood is very small $(<1 / 10,000)$.
Serious adverse event	An adverse outcome resulting in death, permanent or long-term physical disability or disfigurement, medium or long-term pain, or admission to hospital; or other outcomes with a long-term or permanent effect on a patient's employment, social or personal life (WHO, 1972).

University College London Hospitals W/RS

TB Treatment

University College London Hospitals W/W

PJP Prophylaxis

Primary and Secondary PJP prophylaxis	
First line	Co-trimoxazole 960 mg PO 3/week - 3/12x FBC, U\&E. Stop if or \downarrow rash (480 mg OD or 960 mg alt. days). - 5% annual risk of SJS or TEN
Alternatives significantly less effective	Dapsone $50-200 \mathrm{mg}$ PO OD AND pyrimethamine 75 mg OD once weekly OR Pentamidine 300 mg nebulised every 4 weeks OR Atovoquone 750 mg PO BD

University College London Hospitals W/rS

NHS Foundation Trust

Reduction of infection risk

Vaccination recommendations* - Pneumococcus - Influenza (annual) - Avoid live vaccines - Varicella: check status, VZIg if exposed Peri-operative recommendations* - Minimise steroid dose pre-op - Do not increase steroid dose peri-op to avoid adrenal insufficiency - Do not routinely stop immunosuppressant pre-op (decision depends on procedure) Intercurrent infection recommendations* - Discontinue oral immunosuppressant (not steroids) until patient recovers from serious infection - Postpone regular IVIg during infective symptoms to reduce clotting risk

Procedures with high infection risk:	Discuss with microbiology team

*Ledingham J et al. Rheumatology (Oxford). 2017 Jun 1;56(6):865-868.

University College London Hospitals W/HS

NHS Foundation Trust

Pregnancy and breastfeeding

	Peri-conception	T1	T2/T3	Breast- feeding	Paternal exposure
Prednisolone	yes	yes	yes	yes	yes
IVMP	yes	yes	yes	yes	yes
AZA	yes	yes	nos	yes	yes
MTX $\leq 25 \mathrm{mg}$ /week	stop 1 month in advance	no	no	yes	
MMF	stop 6 weeks in advance	no	no	no	no
CYC	no	no	yes	yes	yes $^{\text {b }}$
IVIg	yes	yes			
Rituximab	consider stopping at conception	severe disease if no alternatives	severe disease if no alternatives		

${ }^{\text {a }}$ Only consider in severe life or organ-threatening maternal disease; ${ }^{\text {b }}$ Limited data available; ${ }^{\text {c }}$ can consider in severe maternal disease if no pregnancy-compatible alternatives available; d if used in third trimester, avoid live vaccinations in infant until six months of age; Russell M et al. Rheumatology 2022

University College London Hospitals W/rs

NHS Foundation Trust

Bone health

Review at 3 years zoledronic acid or 5 years oral bisphosphonate.
Longer treatment recommended if:

- age >75 years;
- history of hip or vertebral fracture;
- fracture while on treatment;
- oral glucocorticoids.

If bone protection discontinued:

- Reassess risk after new fracture, regardless of when this occurs;
- If no new fracture occurs, reassess risk at 18 months to 3 years.

University College London Hospitals W/rs

Screen for significant co-morbidities

Pre-treatment screening	Height, weight, blood pressure and vascular risk assessment FBC, creatinine/calculated GFR, ALT and/or AST, albumin Blood-borne viruses (HIV, HBV, HCV) History and examination for respiratory disease
Situation	Recommendation
Suspicion of parenchymal lung disease: Consider referral to respiratory physician (Particularly important with MTX or cyclophosphamide use)	- Smoking cessation advice - Lung function tests - CXR +/- high resolution CT chest
HIV, HBV and HCV:	- Consider anti-viral treatment prior to immuno-suppression (discuss with specialist)
Abnormal liver biochemistry: AST or ALT>100	- Not an absolute contraindication - Select less hepatotoxic drug: MMF>AZA
Abnormal synthetic liver function:	- Not an absolute contraindication - Increased risk of toxicity: Except MMF
Chronic renal impairment	- Increased toxicity and direct nephrotoxicity - Investigate cause for newly identified CRI - Alter dose/ frequency and monitoring (Page 9)
Cardiovascular risk	Primary prevention pre-treatment
Previous malignancy	Not an absolute contraindication; routine population screening recomme

University College London Hospitals W/RS

NHS Foundation Trust

Dose adjustment in Chronic renal impairment

| Drug | Accumulates
 in CRI | Potential for
 nephrotoxicity | Chronic renal impairment | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Recommended adjustment (\% of standard dose) | | |
| AZA | No | No | Normal | $75-100 \%$ | $50-100 \%$ |
| MTX | Yes | Yes | 50% | Contraindicated | Contraindicated |
| MMF | Yes | No | Normal dose | 1 mg BD max. | 1 mg BD max. |
| CYC | Yes | Yes | According to age and creatinine (Page 14) | | |

University College London Hospitals W/HS

Established outcome measures in NM diseas ${ }^{\text {NHS Foundation Tuust }}$
Established outcome measures in NM disease

Condition	Established disability measure
CIDP	MRC sum score
	CIDP-RODS*
	Dynometer (kPa)**
	10m timed walk (seconds)
	ONLS
Other neuropathy/ neuromyotonia	INCAT sensory sum score*
	Berg balance scale*
	ABC balance score *
	Tremor scale*
	Myotonia behaviour scale*
MMN	MRC sum score
	Dynometer (kPa)**
	MMN-RODS*
	ONLS
Inflammatory myopathy	MRC sum score
	Up and go 3 m walk (seconds)
	CK
	HAQ score*
	Physician global activity assessment
	Patient/parent global activity assessment
	Manual muscle testing (MMT)
	MDAAT
MG	MG composite*
	MG-ADL score
	Respiratory function, e.g. forced vital capacity

University College London Hospitals W/HS

NHS Foundation Trust

Corticosteroids

University College London Hospitals W/RS

NHS Foundation Trust

Monitoring in ALL steroid-sparing agents

CONSENT

Common S/E

- Nausea
- Gl symptoms
- Infection risk
- Potential for hepatic and renal toxicity
- Potential for bone marrow failure
- Potential for teratogenicity

When	What
Pre-treatment	FBC, U\&E, eGFR, LFT, albumin, BhCG, HIV, HBV, HCV, EBV. Assess TB risk. Document VZV status.
Monitoring	FBC, U\&E, eGFR, LFT, albumin x 2 weeks until stable dose for at least 6weeks
	On stable dose: monthly FBC, U\&E, LFT, albumin x3 months
	Then 3 monthly FBC, U\&E, LFT, albumin
Following dose change	FBC, U\&E, eGFR, LFT, albumin x 2 weeks until stable dose for at least 6weeks

ACTIONABLE EVENTS

Event	Action
WBC $<3.5 \times 10^{9} / \mathrm{L}$	Withhold until discussion with specialist
team.	

University College London Hospitals W/HS

NHS Foundation Trust

Azathioprine

CONSENT

Common S/E

- GI disturbance
- Hepatic and renal dysfunction
- Dose related bone marrow suppression
- Skin: fungal infection/ reactivation and BCC
- Infections
- VZV reactivation
Rare/ SAE:
- Hepatic venoocclusive disease
- Pure red cell aplasia
- pancreatitis

Starting dose	$1 \mathrm{mg} / \mathrm{kg} /$ day	Increase at 4 weeks to 2mg/day and then as necessary	Target dose	2-3 mg/kg/day
Cautions	Drug interactions	Contraindications		
Non-melanoma skin cancer	Allopurinol, aminosalicylates, Co- trimoxazole, trimethoprim (Severe)	Homozygous TMPT deficiency		
Pancreatitis	Warfarin	Live vaccine		
TB, Hepatitis B and C	ACE-inhibitors	Lesch-Nyhan syndrome		
Heterozygous TMPT deficiency	Phenytoin, carbamazepine, sodium valproate			

SPECIFIC MONITORING

When	What
Pre-treatment	TMPT
Monitoring	As per All steroid sparing agents Except if TMPT low metaboliser: at least monthly monitoring

University College London Hospitals W/HS

NHS Foundation Trust

Methotrexate

CONSENT

Common S/E

- Gl disturbance
- Skin, nail and hair changes
- Hepatic and renal dysfunction
- Dose related bone marrow suppression
- Infection: VZV reactivation
Rare/ SAE:
- Pneumonitis
- Hypersensitivi ty/ SJS

Starting dose	5-10 $\mathrm{mg} /$ week	Increase by 2.5-5mg every 2-6 weeks	Target dose	7.5-25 mg/weeky
CO-PRESCIBE WITH 5mg FOLIC ACID PER WEEK on ALTERNATE DAY TO MTX				
Cautions	Drug interactions	Contraindications		
Renal impairment	Phenytoin (\uparrow anti-folate effect)	Suspected infection		
TB, Hepatitis B and C	Probenecid, NSAIDs, Penicillin $(\downarrow$ excretion)	Pregnancy and breast feeding		
Anaemia, cytopenia with bone marrow failure	Co-trimoxazole, trimethoprim (个marrow failure)	Bone marrow failure or unexplained anaemia/ cyptopenia		
	Tolbutamide (\uparrow MTX concentration)			

SPECIFIC MONITORING

When	What
Pre-treatment	CXR
Monitoring	Annual CXR

University College London Hospitals W/RS

Mycophenolate mofetil

CONSENT

Common S/E

- Gl disturbance
- Hepatic and renal dysfunction
- Dose related bone marrow suppression
- Skin: fungal infection/ reactivation and BCC
- Infections
- VZV
reactivation
Rare/ SAE:
- PML (with concomitant immunosuppr essant)

Starting dose	$500 \mathrm{mg} /$ day	Then 500mg BD, increase by 500mg per week to efficacy/ as tolerated	Target dose
Beware Drug-interactions 3g/day			
Malignancy: B-cell lymphoma associated with EBV (\uparrow azathioprine, tacrolimus and ciclosporin)	Antacids (\downarrow bioavailability)	Contraindications	
Lymphoproliferative disease or unexplained anaemia, thrombocytopenia or neutropenia	Cholestyramine (\downarrow bioavailability)	Localised and systemic infection	
Gastrointestinal disturbance	Probenecid (\uparrow concentration)		
Urogenital irritation/ infection	Aciclovir (\uparrow concentration of both drugs)		
Bone marrow failure: bruising and sore throat. (Severe sepsis in $0.5 \%)$			

University College London Hospitals W/HS

NHS Foundation Trust

Rituximab

CONSENT

Common AE

- Infusion reaction
- Bone marrow suppression
- Infection
- Mild
hypersensitivity reactions
- SLE-like syndrome
Rare/ SAE:
- PML (with concomitant immunosuppres sant)
- Hypogammaglobulinaemia (with repeat treatments)
- Severe skin reaction:SJS*, TEN**

Dose	$1 \mathrm{~g} \mathrm{IVI} \mathrm{x2} \mathrm{(2} \mathrm{weeks} \mathrm{apart)}$		Further 1 g IVI at 4 weeks post second dose if no CD19 depletion			
REQUIRED PRE-MEDICATIONS: 100 mg IVMP + 10 mg IV chlorphenamine + 1g PO paracetamol						
Adverse events		Incidence				Contraindications
Infusion reactions		25% during first infusion; usually mild to moderate in severity; reduced incidence on subsequent infusions				Hypersensitivity to Rituximab or other murine proteins
Hypogammaglobulinaemia		Low serum IgM (22.4\%), $\operatorname{lgG}(3.5 \%)$, or $\operatorname{IgA}(1.1 \%)$ levels for more than 4 months; serious infections more common in those with low IgG levels				Severe heart failure
Serious infection		3.94/100 patient-years (as per MTX in RCT); infection rate static over 5 years of treatment; serious opportunistic infection rare (0.06/100 patient-years)				Active infection
		Zoster reactivation: 9/1,000 patient-years (as per MTX)				Pregnancy/ breastfeeding
		TB: 2/3,194 cases (0.06\%)				
		PML: Rare (2.3/100,000 patient-years)				
Pretreatment assessment	FBC, CD19, U\&E, LFTs, HIV, HBV, HCV, HBs Ag, anti-HbclgG, Ig, BhCG. VZV, TB screening (Vaccination recommended >4 weeks prior to treatment)			$\begin{aligned} & \hline \text { Event } \\ & \hline \text { HBsAg -ve anti- } \\ & \text { HBc IgG+ve } \end{aligned}$	Check HBV DNA titre: if undetectable monitor: if \uparrow with treatment refer to hepatology for antivirals	
Monitoring	$\lg \times 6 \mathrm{monthly}$			HBsAg -ve anti-	Pre-treatment vaccination	
	C19 x4 weeks-4 months post-dose to check response			HBsAG +ve and/or anti-HBc $\lg G+v e$	Pre-treatment prophylaxis (consider alternative to Rituximab/ with hepatology)	
*SJS: Stevens Johnson syndrome **TEN: Toxic epidermal necrolysis				HCV +ve	Discuss with hepatology	

University College London Hospitals W/rS

NHS Foundation Trust

CYCLOPHOSPHAMIDE

CONSENT: Adverse reactions	PREVENTION
Bladder toxicity	1L prehydration with normal saline or orally over 1 hour prior to pulsed cyclophosphamide 3L/day oral fluid intake for 3 days Mesna 200mg IV in 100ml sodium chloride 0.9\% infusion over 30 minutes before pulsed cyclophosphamide Mesna 400mg PO stat at 2 hours post- cyclophosphamide Mesna 400mg PO stat at 6 hours post cyclophosphamide
PJP	Co-trimoxazole 480mg three times per week (care with allergy)
GI disturbance	Cyclizine 50mg slow IV bolus or ondansetron 8mg slow IV bolus 15 minutes before pulsed cyclophosphamide Domperidone 10-20mg PO TDS for 3-5 days
CIN	Annual smear x3years Follow up as per national guidelines
Vaccination	Influenza/ pneumococcus (if possible) Avoid live vaccination
Fungal infection	Consider prophylaxis
Staph. Aureus	Consider treatment in Wegner's granulomatosis
Infertility	Counsel; consider cryopreservation if clinically permitted
Osteoporosis	Bisphosphonate + calcium + vit. D (given co-prescription of corticosteroids)
TB	Risk assessment
HBV, HCV, HIV, VZV	Screen pre-treatment. Treat if indication (specialist discussion)

University College London Hospitals W/RS

NHS Foundation Trust

CYCLOPHOSPHAMIDE

Prednisolone*

- 60 mg OD x1week
- 45 mg OD x1week
- 30mg OD x1week
- 20 mg OD x2weeks
- 15 mg OD x2weeks
- 12.5 mg OD x4weeks
- 10 mg OD x8weeks
- 7.5 mg OD x6months
- 5 mg OD x $3-6$ months
+/-12.5\% in first 2
months
+/-25\% after that

Induction

- Cyclophosphamide
-15mg/kg x10 cycles (Max: 1.5g)
- Titrate to age/GFR/WCC
- AND
-Oral prednisolone*
- OR
- IVMP/ PLEX (life threatening or organ threatening disease)

Remission

- Taper steroids as per CYCLOPS regimen* - Commence maintenance therapy as appropriate 3 weeks following end of cyclo - Azathioprine
- Methotrexate
- Mycophenolate mofetil

Maintenance

- Taper at 2years if clinically stable

Dosing in obese patients: use ABW 25 , using the equation IBW $+0.25 \times$ (TBW - IBW)

Age (years)	Creatinine 150-300 $\mathrm{mol} / \mathrm{L}$	Creatinine 300$500 \mathrm{~mol} / \mathrm{L}$	Pre-dose FBC:	
			WBC $<4 \times 10^{9} / \mathrm{L}$ or $\mathrm{NE}<2 \times 10^{9} / \mathrm{L}$ prior to dose	Postpone dose and check weekly until WBC $>4 \times 10^{9 / L}$ and NE>2 $\times 10^{9 / L}$
<60	15 mg/kg/pulse	12.5 mg/kg/pulse	After pulse 1 monitor FBC on day 7, 10 and 14: After each dose change monitor FBC on day 10:	
$\begin{aligned} & >60 \text { and } \\ & <70 \end{aligned}$	12.5 mg/kg/pulse	$10 \mathrm{mg} / \mathrm{kg} / \mathrm{pulse}$	If Leucocyte nadir $1-2 \times 10^{9} / \mathrm{L}$ or neutrophil nadir $0.5-1.0 \times 109 / \mathrm{L}$ (after $1^{\text {st }}$ 2 doses or at day 10 after dose change)	Reduce pulse by 40\% of previous dose
>70	10 mg/kg/pulse	$7.5 \mathrm{mg} / \mathrm{kg} / \mathrm{pulse}$	If Leucocyte nadir $2-3 \times 10^{9} / \mathrm{L}$ or neutrophil nadir 1.0-1.5 $\times 10 \% / \mathrm{L}$ (after $1^{\text {st }}$ 2 doses or at day 10 after dose change)	Reduce pulse by 20\% of previous dose

Monitoring:	
	FBC
	As above
	Cr clearance
Urinalysis	3 monthly. x1 year / 6 monthly x2-5 years. If haematuria: MSSU ,;if no infection: cystoscopy Annual cytology: on going.
Clinical	Monthly x 3/12; then 3-6 months x1yr; then 6-12 monthly x2-5 year
Cervical smear	Annually for first 3 years, then according to national guidelines

* De Groot et al. Ann Intern Med. 2009 May 19;150(10):670-80.

University College London Hospitals W/rs

NHS Foundation Trust

IV Immunoglobulin

Calculate ideal body weight (IBW) (kg):
IBW for males = $50+[2.3 x$
(height in inches -60)]
IBW for female $=$ $45.5+[2.3 \mathrm{x}$ (height in inches -60)]

Calculate dosedetermining weight (DDW) (kg):
DDW $=I B W+$ 0.4 [actual body weight (kg) IBW]

Use DDW for calculating the IVIg dose required

Induction	Starting dose	
2 doses of IVIg 4-6 weeks apart	Dose: $2 \mathrm{~g} / \mathrm{kg}$ ($1 \mathrm{mg} / \mathrm{kg}$ in myasthenia) If $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m} 2$ or if actual weight $>20 \%$ more than IBW, consider adjusted-bodyweight	Rate : $0.4 \mathrm{~g} / \mathrm{kg} /$ day over 5 days Max. rate: $100 \mathrm{ml} / \mathrm{hr}$ Max. volume: $1 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$
MAINTENANCE: SEE ALGORITHM		
Consent/ Adverse reactions		
10-15\%:infusion related headaches, higher risk in migraineurs (Can be managed with pre-medication, rate and dose reduction/ dose fractionation and migraine prophylaxis)		
Elevated thromboembolic risk: Hold IVIg during active infection. Review procoagulant medication, risk of hyperviscosity, DVT risk. \uparrow TEE risk by $50 \% /$ year if IVIg and HTN and T2DM; $\uparrow 53 \% / \mathrm{yr}$ if IVIg and T2DM; $\uparrow 15 \% / \mathrm{yr}$ if IVIg and HTN: Proactively manage HTN and T2DM in IVIg patients.		
Anaphylaxis/ transmission of infective agent : very rare i(>1:10,000).		
Haemolytic anaemia: Very rare (>1:100,000 infusions). Lymphopenia/ thrombocytopenia: transient / rarely clinically significant. Check FBC IF clinically indicated (not routinely)		

MONITORING	
Pre-treatment assessment	Hepatitis screen, HIV, IgA
	FBC, U\&E, PPE, immunofixation
	Consider testing Ig levels, plasma viscosity
Before each infusion	Blood pressure, oxygen saturation, pulse, respiratory rate and temperature
	Check FBC (differential), urea and electrolytes ONLY if clinically indicated
	Review for evidence of infection
	Check for evidence of VTE
Annual clinical assessment (consultant or CNS)	Pre and post-treatment assessment using at least 3 validated disability measures

ACTIONS	
Event	Action
Mild infusion related reactions	Slow or stop infusion. Give paracetamol for fever/headaches. Restart infusion as per protocol when symptoms have resolved. If symptoms persist, stop the infusion and seek medical advice
MODERATE/ SEVERE reaction	Stop infusion. Call for medical help. If necessary, administer supportive drugs: Hydrocortisone iv,Chlorphenamine iv, Salbutamol. Anaphylaxis/Crash box should be available
IgM / IgG paraprotein	Consider possibility of mixed cryoglobulinaemia. Seek immunological advice Consider measuring serum viscosity
Serum viscosity >3 mPas	Exercise caution; use slower rate of infusion and lower dose. Before and after infusion check viscosity.

University College London Hospitals N/PS

IVIg dosing algorithm

* At least 3 pre-set, individualised outcome measures

