Skip to main content

Adenosine A2A Receptors and Parkinson’s Disease

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

The drug treatment of Parkinson’s disease (PD) is accompanied by a loss of drug efficacy, the onset of motor complications, lack of effect on non-motor symptoms, and a failure to modify disease progression. As a consequence, novel approaches to therapy are sought, and adenosine A2A receptors (A2AARs) provide a viable target. A2AARs are highly localized to the basal ganglia and specifically to the indirect output pathway, which is highly important in the control of voluntary movement. A2AAR antagonists can modulate γ-aminobutyric acid (GABA) and glutamate release in basal ganglia and other key neurotransmitters that modulate motor activity. In both rodent and primate models of PD, A2AAR antagonists produce alterations in motor behavior, either alone or in combination with dopaminergic drugs, which suggest that they will be effective in the symptomatic treatment of PD. In clinical trials, the A2AAR antagonist istradefylline reduces “off” time in patients with PD receiving optimal dopaminergic therapy. However, these effects have proven difficult to demonstrate on a consistent basis, and further clinical trials are required to establish the clinical utility of this drug class. Based on preclinical studies, A2AAR antagonists may also be neuroprotective and have utility in the treatment of neuropsychiatric disorders. We are only now starting to explore the range of potential uses of A2AAR antagonists in central nervous system disorders, and their full utility is still to be uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIMs:

Abnormal involuntary movements

A2AAR:

Adenosine A2A receptor

AUC:

Area under the curve

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BG:

Basal ganglia

COMT:

Catechol-O-methyl transferase

CPu:

Caudate-putamen

CGI:

Clinical global impression

DA:

Dopamine

DYN:

Dynorphin

ENK:

Enkephalin

GABA:

γ-Aminobutyric acid

GAD67:

Glutamic acid decarboxylase

GP:

Globus pallidus

GPe:

Globus pallidus, external segment

GPi:

Globus pallidus, internal segment

5-HT:

5-Hydroxytryptamine

LOCF:

Last observation carried forward

KO:

Knockout

l-DOPA:

3,4-Dihydroxy-l-phenylalanine

LTP/LDP:

Long-term potentiation/long-term depression

mGlu5:

Metabotropic glutamate subtype 5

MAO B:

Monoamine oxidase B

6-OHDA:

6-Hydroxydopamine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

STN:

Subthalamus

SNr:

Substantia nigra pars reticulata

TJM:

Tremulous jaw movement

UPDRS:

Unified Parkinson’s disease rating scale

References

  • Acquas E, Tanda G, Di Chiara G (2002) Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology 27:182–193

    CAS  PubMed  Google Scholar 

  • Agid Y (1991) Parkinson’s disease: pathophysiology. Lancet 337:1321–1324

    CAS  PubMed  Google Scholar 

  • Ahlskog JE (2007) I can’t get no satisfaction: still no neuroprotection for Parkinson disease. Neurology 69:1476–1477

    PubMed  Google Scholar 

  • Appollonio I, Grafman J, Clark K, Nichelli P, Zeffiro T, Hallett M (1994) Implicit and explicit memory in patients with Parkinson’s disease with and without dementia. Arch Neurol 51:359–367

    CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    CAS  PubMed  Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296

    CAS  PubMed  Google Scholar 

  • Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70:1438–1444

    CAS  PubMed  Google Scholar 

  • Berg D (2006) Marker for a preclinical diagnosis of Parkinson’s disease as a basis for neuroprotection. J Neural Transm Suppl:123–132

    Google Scholar 

  • Bibbiani F, Oh JD, Petzer JP, Castagnoli N Jr, Chen JF, Schwarzschild MA (2003) A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol 184:285–294

    CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Bioulac B, Gross CE (2001) Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain 124:546–557

    CAS  PubMed  Google Scholar 

  • Bornebroek M, de Lau LM, Haag MD, Koudstaal PJ, Hofman A, Stricker BH, Breteler MM (2007) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Neuroepidemiology 28:193–196

    PubMed  Google Scholar 

  • Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del TK (2006a) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21:2042–2051

    PubMed  Google Scholar 

  • Braak H, Muller CM, Rub U, Ackermann H, Bratzke H, de Vos RA, Del TK (2006b) Pathology associated with sporadic Parkinson’s disease: where does it end? J Neural Transm Suppl 89–97

    Google Scholar 

  • Braak H, Del TK (2008) Invited article: Nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925

    PubMed  Google Scholar 

  • Brooks DJ, Doder M, Osman S, Luthra SK, Gunn R, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A (2008) Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 62:671–681

    CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Parnetti L, Di FM (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurol 5:974–983

    CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Di FM (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    CAS  PubMed  Google Scholar 

  • Carta AR, Pinna A, Cauli O, Morelli M (2002) Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus L-dopa in dopamine-denervated rats. Synapse 44:166–174

    CAS  PubMed  Google Scholar 

  • Carta AR, Tabrizi MA, Baraldi PG, Pinna A, Pala P, Morelli M (2003) Blockade of A2A receptors plus L-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from L-DOPA alone in the rat globus pallidus and substantia nigra reticulata. Exp Neurol 184:679–87

    CAS  PubMed  Google Scholar 

  • Cenci MA, Lee CS, Bjorklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–706

    CAS  PubMed  Google Scholar 

  • Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD (2003) Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology 61:S107–11

    CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Yates L, Martinez-Martin P (2005) The non-motor symptom complex of Parkinson’s disease: a comprehensive assessment is essential. Curr Neurol Neurosci Rep 5:275–283

    PubMed  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    CAS  PubMed  Google Scholar 

  • Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and fine tuning modulation. Prog Neurobiol 83:310–331

    CAS  PubMed  Google Scholar 

  • Coccurello R, Breysse N, Amalric M (2004) Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29:1451–61

    CAS  PubMed  Google Scholar 

  • Correa M, Wisniecki A, Betz A, Dobson DR, O’Neil MF, O’Neil MJ, Salamone JD (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    CAS  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    CAS  PubMed  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    CAS  PubMed  Google Scholar 

  • Esposito E, Di MV, Benigno A, Pierucci M, Crescimanno G, Di GG (2007) Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 205:295–312

    CAS  PubMed  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22:1379–1389

    PubMed  Google Scholar 

  • Fahn S, Jankovic J (2007) Principles and practice of movement disorders. Elsevier, Philadelphia, pp 1–652

    Google Scholar 

  • Fernandez HH, 6002-US-051 Clinical Investigator Group (2008) The safety and efficacy of istradephylline, an adenosine A2A antagonist, as monotherapy in Parkinson’s Disease: results of the KW-6002-US-051 trial. Presented at the 12th International Congress of Parkinson’s Disease and Movement Disorders, Chicago. Mov Disord 23(Suppl 1):S87

    Google Scholar 

  • Ferré S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueño J, Gutiérrez MA, Casadó V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 99:11940–11945

    PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195

    CAS  PubMed  Google Scholar 

  • Fredduzzi S, Moratalla R, Monopoli A, Cuellar B, Xu K, Ongini E (2002) Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors. J Neurosci 22:1054–1062

    CAS  PubMed  Google Scholar 

  • Fredholm BB (1995) Purinoceptors in the nervous system. Pharmacol Toxicol 76:228–239

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220

    CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Genedani S, Agnati L (2007) Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov Disord 22:1990–1917

    PubMed  Google Scholar 

  • Galvan A, Floran B, Erlij D, Aceves J (2001) Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm 108:153–166

    CAS  PubMed  Google Scholar 

  • Gao WJ, Goldman-Rakic PS (2003) Selective modulation of excitatory and inhibitory microcircuits by dopamine. Proc Natl Acad Sci USA 100:2836–2841

    CAS  PubMed  Google Scholar 

  • Gasser T (2007) Update on the genetics of Parkinson’s disease. Mov Disord 22(Suppl 17):S343–S350

    PubMed  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    CAS  PubMed  Google Scholar 

  • Giménez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camón L, Wassholm M, Canals M, Terasmaa A, Fernández-Teruel A, Tobeña A, Popova E, Ferré S, Agnati L, Ciruela F, Martínez E, Scheel-Kruger J, Lluis C, Franco R, Fuxe K, Bader M (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56

    PubMed  Google Scholar 

  • Grondin R, Bedard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677

    CAS  PubMed  Google Scholar 

  • Guridi J, Obeso JA, Rodriguez-Oroz MC, Lozano AA, Manrique M (2008) L-Dopa-induced dyskinesia and stereotactic surgery for Parkinson’s disease. Neurosurgery 62:311–23

    PubMed  Google Scholar 

  • Guttman M, 6002-US-018 Clinical Investigator Group (2006) Efficacy of istradephylline in Parkinson’s disease patients treated with levodopa with motor response complications: results of the KW-6002-US-018 study. Presented at the 10th International Congress of Parkinson’s Disease and Movement Disorders, Kyoto. Mov Disord 21(Suppl. 15):S585

    Google Scholar 

  • Halldner L, Lozza G, Lindström K, Fredholm BB (2000) Lack of tolerance to motor stimulant effects of a selective adenosine A(2A) receptor antagonist. Eur J Pharmacol 406:345–354

    CAS  PubMed  Google Scholar 

  • Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60:389–398

    CAS  PubMed  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    CAS  PubMed  Google Scholar 

  • Hauber W, Lutz S (1999) Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav Brain Res 106:143–150

    CAS  PubMed  Google Scholar 

  • Hauber W, Neuscheler P, Nagel J, Muller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Eur J Neurosci 14:1287–93

    CAS  PubMed  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    CAS  PubMed  Google Scholar 

  • Hauser RA, Schwarzschild MA (2005). Adenosine A2A receptor antagonists for Parkinson’s disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22:471–482

    CAS  PubMed  Google Scholar 

  • Hauser R, 6002-US-013 Clinical Investigator Group (2006) Effects of istradephylline (KW-6002) in levodopa treated Parkinson’s disease patients with motor response complications: secondary efficacy results of the KW-6002-US-013 study. Presented at the 10th International Congress of Parkinson’s Disease and Movement Disorders, Kyoto. Mov Disord 21(Suppl 15):S510

    Google Scholar 

  • Hauser RA, Shulman LM, Trugman JM, Roberts J, Mori A, Ballerini R, Sussman NM (2008) Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 23:2177–2185

    PubMed  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    CAS  PubMed  Google Scholar 

  • Horstink M, Tolosa E, Bonuccelli U, Deuschl G, Friedman A, Kanovsky P, Larsen JP, Lees A, Oertel W, Poewe W, Rascol O, Sampaio C (2006a) Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies and the Movement Disorder Society–European Section. Part I: early (uncomplicated) Parkinson’s disease. Eur J Neurol 13:1170–1185

    CAS  PubMed  Google Scholar 

  • Horstink M, Tolosa E, Bonuccelli U, Deuschl G, Friedman A, Kanovsky P, Larsen JP, Lees A, Oertel W, Poewe W, Rascol O, Sampaio C (2006b) Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies (EFNS) and the Movement Disorder Society–European Section (MDS-ES). Part II: late (complicated) Parkinson’s disease. Eur J Neurol 13:1186–1202

    CAS  PubMed  Google Scholar 

  • Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22:2242–2248

    PubMed  Google Scholar 

  • Hung AY, Schwarzschild MA (2007) Clinical trials for neuroprotection in Parkinson’s disease: overcoming angst and futility? Curr Opin Neurol 20:477–483

    CAS  PubMed  Google Scholar 

  • Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270

    CAS  PubMed  Google Scholar 

  • Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(Suppl 11):S11–S16

    PubMed  Google Scholar 

  • Jankovic J (2006) An update on the treatment of Parkinson’s disease. Mt Sinai J Med 73:682–689

    PubMed  Google Scholar 

  • Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21:677–692

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Recent developments in the pathology of Parkinson’s disease. J Neural Transm Suppl 347–376

    Google Scholar 

  • Jenner P (2003) A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 61:S32–S38

    CAS  PubMed  Google Scholar 

  • Jenner P, Olanow CW (2006) The pathogenesis of cell death in Parkinson’s disease. Neurology 66:S24–S36

    PubMed  Google Scholar 

  • Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–19

    CAS  PubMed  Google Scholar 

  • Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J (1994) KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268

    CAS  PubMed  Google Scholar 

  • Kanda T, Tashiro T, Kuwana Y, Jenner P. (1998a) Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 9:2857–2860

    CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998b) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    CAS  PubMed  Google Scholar 

  • Kase H, Aoyama S, Ichimura M, Ikeda K, Ishii A, Kanda T, Koga K, Koike N, Kurokawa M, Kuwana Y, Mori A, Nakamura J, Nonaka H, Ochi M, Saki M, Shimada J, Shindou T, Shiozaki S, Suzuki F, Takeda M, Yanagawa K, Richardson PJ, Jenner P, Bedard P, Borrelli E, Hauser RA, Chase TN (2003) Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology 61:S97–S100

    CAS  PubMed  Google Scholar 

  • Kieburtz K, Ravina B (2007) Why hasn’t neuroprotection worked in Parkinson’s disease? Nat Clin Pract Neurol 3:240–241

    CAS  PubMed  Google Scholar 

  • Koga K, Kurokawa M, Ochi M, Nakamura J, Kuwana Y (2000) Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255

    CAS  PubMed  Google Scholar 

  • Kulisevsky J, García-Sánchez C, Berthier ML, Barbanoj M, Pascual-Sedano B, Gironell A, Estévez-González A (2000) Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-year follow-up study of previously untreated patients. Mov Disord 15(4):613–626

    CAS  PubMed  Google Scholar 

  • Kurokawa M, Koga K, Kase H, Nakamura J, Kuwana Y (1996) Adenosine A2A receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 66:1882–1888

    Article  CAS  PubMed  Google Scholar 

  • Küst BM, Biber K, van Calker D, Gebicke-Haerter PJ (1999) Regulation of K +  channel mRNA expression by stimulation of adenosine A2A-receptors in cultured rat microglia. Glia 25:120–130

    PubMed  Google Scholar 

  • LeWitt PA (2006) Neuroprotection for Parkinson’s disease. J Neural Transm Suppl:113–122

    Google Scholar 

  • LeWitt PA, 6002-US-005/6002-US-006 Clinical Investigator Group (2004) OFF time reduction from adjunctive use of istradephylline (KW-6002) in levodopa-treated patients with advanced Parkinson’s disease. Presented at 8th International Congress of Parkinson’s Disease and Movement Disorders, Rome. Mov Disord 19(Suppl 9):S222

    Google Scholar 

  • LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces OFF time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63:295–302

    CAS  PubMed  Google Scholar 

  • Litvan I, Chesselet MF, Gasser T, Di Monte DA, Parker D Jr, Hagg T, Hardy J, Jenner P, Myers RH, Price D, Hallett M, Langston WJ, Lang AE, Halliday G, Rocca W, Duyckaerts C, Dickson DW, Ben-Shlomo Y, Goetz CG, Melamed E (2007a) The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J Neuropathol Exp Neurol 66:251–257

    CAS  Google Scholar 

  • Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH, Parker D Jr, Price DL (2007b) The etiopathogenesis of Parkinson disease and suggestions for future research. Part II. J Neuropathol Exp Neurol 66:329–336

    CAS  Google Scholar 

  • Mally J, Stone TW (1996) Potential role of adenosine antagonist therapy in pathological tremor disorders. Pharmacol Ther 72:243–250

    CAS  PubMed  Google Scholar 

  • Mark MH, 6002-US-007 Clinical Investigator Group (2005) Long-term efficacy of istradephylline in patients with advanced Parkinson’s disease. Presented at 9th International Congress of Parkinson’s disease and Movement Disorders, New Orleans. Mov Disord 20(Suppl 10):S93

    Google Scholar 

  • McCulloch CC, Kay DM, Factor SA, Samii A, Nutt JG, Higgins DS, Griffith A, Roberts JW, Leis BC, Montimurro JS, Zabetian CP, Payami H (2008) Exploring gene–environment interactions in Parkinson’s disease. Hum Genet 123:257–265

    CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    PubMed  Google Scholar 

  • Mihara T, Mihara K, Yarimizu J, Mitani Y, Matsuda R, Yamamoto H, Aoki S, Akahane A, Iwashita A, Matsuoka N (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition.J Pharmacol Exp Ther 323:708–719

    CAS  PubMed  Google Scholar 

  • Morelli M (2003) Adenosine A2A antagonists: potential preventive and palliative treatment for Parkinson’s disease. Exp Neurol 184:20–23

    CAS  PubMed  Google Scholar 

  • Morelli M, Fenu S, Pinna A, Di Chiara G (1994) Adenosine A2 receptors interact negatively with dopamine D1 and D2 receptors in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 251:21–25

    CAS  PubMed  Google Scholar 

  • Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci USA 100:1322–1327

    PubMed  Google Scholar 

  • Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N, Tanaka K, Saito N (2002) A new neuromodulatory pathway with a glial contribution mediated via A(2a) adenosine receptors. Glia 39:133–147

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz M, Marin C, Alonso F, Zamarbide I, Lanciego JL, Rodriguez-Diaz M (2004) The origin of motor fluctuations in Parkinson’s disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology 62:S17–S30

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Javier Blesa F, Guridi J (2006) The globus pallidus pars externa and Parkinson’s disease. Ready for prime time? Exp Neurol 202:1–7

    PubMed  Google Scholar 

  • Ochi M, Shiozaki S, Kase H (2004) Adenosine A(2A) receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson’s disease. Neuroscience 127:223–231

    CAS  PubMed  Google Scholar 

  • O’Neill M, Brown VJ (2006) The effect of the adenosine A(2A) antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology 184:46–55

    PubMed  Google Scholar 

  • Papa SM, Desimone R, Fiorani M, Oldfield EH (1999) Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann Neurol 46:732–738

    CAS  PubMed  Google Scholar 

  • Pierri M, Vaudano E, Sager T, Englund U (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48:517–524

    CAS  PubMed  Google Scholar 

  • Pinna A, di Chiara G, Wardas J, Morelli M (1996) Blockade of A2A adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D1 agonists in dopamine-denervated rats. Eur J Neurosci 8:1176–1181

    CAS  PubMed  Google Scholar 

  • Pinna A, Fenu S, Morelli M (2001) Motor stimulants effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine lesioned rats. Synapse 39:233–239

    CAS  Google Scholar 

  • Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M (2002) Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82

    CAS  PubMed  Google Scholar 

  • Pinna A, Pontis S, Morelli M (2007) Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 61:606–614

    CAS  PubMed  Google Scholar 

  • Pollack AE, Fink JS (1996) Synergistic interaction between an adenosine antagonist and a D1 dopamine agonist on rotational behavior and striatal c-Fos induction in 6-hydroxydopamine-lesioned rats. Brain Res 743:124–130

    CAS  PubMed  Google Scholar 

  • Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pèzzola A, Scarchilli L, Quarta D, Reggio R, Malchiodi-Albedi F, Falchi M, Massotti M (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975

    CAS  PubMed  Google Scholar 

  • Pourcher E, 6002-US-018 Clinical Investigator Group (2006) Safety and tolerability of istradephylline (KW-6002) in Parkinson’s disease with motor response complications: results of the KW-6002-US-018 study. Presented at the 10th International Congress of Parkinson’s Disease and Movement Disorders, Kyoto. Mov Disord 21(Suppl 15):S508

    Google Scholar 

  • Powers KM, Kay DM, Factor SA, Zabetian CP, Higgins DS, Samii A, Nutt JG, Griffith A, Leis B, Roberts JW, Martinez ED, Montimurro JS, Checkoway H, Payami H (2008) Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov Disord 23:88–95

    PubMed  Google Scholar 

  • Rao N, Uchimura T, Mori A (2005a) Evaluation of safety, tolerability, and multiple dose pharmacokinetics of istradephylline in healthy subjects. Clin Pharmacol Ther 83(Suppl):PIII-89

    Google Scholar 

  • Rao N, Uchimura T, Mori A (2005b) Evaluation of safety, tolerability, and multiple dose pharmacokinetics of istradephylline in Parkinson’s disease patients. Clin Pharmacol Ther 83(Suppl):PIII-88

    Google Scholar 

  • Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, Van Den Eeden SK, Gorell J (2007) Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64:990–997

    PubMed  Google Scholar 

  • Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92:433–441

    PubMed  Google Scholar 

  • Rose S, Ramsay Croft N, Jenner P. The novel adenosine A2A antagonist (2007) ST1535 potentiates the effects of a threshold dose of L-dopa in unilaterally 6-OHDA-lesioned rats. Brain Res 1133:110–114

    Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    CAS  PubMed  Google Scholar 

  • Rosin DL, Hettinger BD, Lee A, Linden J (2003) Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 61:S12–S18

    CAS  PubMed  Google Scholar 

  • Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A (1998) Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 56:591–611

    CAS  PubMed  Google Scholar 

  • Schapira AH (2008) Progress in neuroprotection in Parkinson’s disease. Eur J Neurol 15(Suppl 1):5–13

    PubMed  Google Scholar 

  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067

    CAS  PubMed  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    CAS  PubMed  Google Scholar 

  • Shindou T, Richardson PJ, Mori A, Kase H, Ichimura M (2003) Adenosine modulates the striatal GABAergic inputs to the globus pallidus via adenosine A2A receptors in rats. Neurosci Lett 352:167–170

    CAS  PubMed  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147:90–95

    CAS  PubMed  Google Scholar 

  • Shulman LM, 6002-US-013 Clinical Investigator Group (2006) The safety profile of istradephylline (KW-6002) in Parkinson’s disease with motor response complications on levodopa/carbidopa: results of KW-6002-US-013 study. Presented at 10th International Congress of Parkinson’s Disease and Movement Disorders, Kyoto. Mov Disord 21(Suppl 15):S488

    Google Scholar 

  • Siderowf A, Stern MB (2006) Preclinical diagnosis of Parkinson’s disease: are we there yet? Curr Neurol Neurosci Rep 6:295–301

    PubMed  Google Scholar 

  • Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2004) Blockade of adenosine A2A receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 189:182–188

    CAS  PubMed  Google Scholar 

  • Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2006) Involvement of globus pallidus in the antiparkinsonian effects of adenosine A(2A) receptor antagonists. Exp Neurol 202:255–257

    CAS  PubMed  Google Scholar 

  • Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2008) Blockade of globus pallidus adenosine A(2A) receptors displays antiparkinsonian activity in 6-hydroxydopamine-lesioned rats treated with D(1) or D(2) dopamine receptor agonists. Synapse 62:345–351

    CAS  PubMed  Google Scholar 

  • Stacy M, Galbreath A (2008) Optimizing long-term therapy for Parkinson disease: levodopa, dopamine agonists, and treatment-associated dyskinesia. Clin Neuropharmacol 31:51–56

    CAS  PubMed  Google Scholar 

  • Stacy M, 6002-US-005/6002-US-006 Clinical Investigator Group (2004) Istradephylline (KW-6002) as adjunctive therapy in patients with advanced Parkinson’s disease: a positive safety profile with supporting efficacy. Presented at 8th International Congress on Parkinson’s Disease and Movement Disorders, Rome. Mov Disord 19(Suppl 9):S215

    Google Scholar 

  • Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, Sussman NM (2008) A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 70:2233–2240

    CAS  PubMed  Google Scholar 

  • Stamey W, Jankovic J (2008) Impulse control disorders and pathological gambling in patients with Parkinson disease. Neurologist 14:89–99

    PubMed  Google Scholar 

  • Stocchi F (2003) Prevention and treatment of motor fluctuations. Parkinsonism Relat Disord 9(Suppl 2):S73–S81

    PubMed  Google Scholar 

  • Stocchi F (2005) Pathological gambling in Parkinson’s disease. Lancet Neurol 4:590–592

    PubMed  Google Scholar 

  • Stocchi F, Olanow CW (2003) Neuroprotection in Parkinson’s disease: clinical trials. Ann Neurol 53(Suppl 3):S87–S97

    CAS  PubMed  Google Scholar 

  • Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    CAS  PubMed  Google Scholar 

  • Tronci E, Simola N, Borsini F, Schintu N, Frau L, Carminati P, Morelli M (2007) Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol 566:94–102

    CAS  PubMed  Google Scholar 

  • Trugman JM, 6002-US-013 Clinical Investigator Group (2006) Efficacy of istradephylline (KW-6002) in levodopa-treated Parkinson’s disease patients with motor response complications: primary efficacy results of the KW-6002-US-013 study. Presented at 10th International Congress of Parkinson’s Disease and Movement Disorders, Kyoto. Mov Disord 21(Suppl 15):S513

    Google Scholar 

  • Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27:494–506

    PubMed  Google Scholar 

  • Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp Neurol 199:438–445

    CAS  PubMed  Google Scholar 

  • Wardas J, Konieczny J, Lorenc-Koci E (2001) SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 41:160–171

    CAS  PubMed  Google Scholar 

  • Weintraub D, Comella CL, Horn S (2008a) Parkinson’s disease—Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 14:S40–S48

    PubMed  Google Scholar 

  • Weintraub D, Comella CL, Horn S (2008b) Parkinson’s disease—Part 2: Treatment of motor symptoms. Am J Manag Care 14:S49–S58

    PubMed  Google Scholar 

  • Weintraub D, Comella CL, Horn S (2008c) Parkinson’s disease—Part 3: Neuropsychiatric symptoms. Am J Manag Care 14:S59–S69

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morelli, M., Carta, A.R., Jenner, P. (2009). Adenosine A2A Receptors and Parkinson’s Disease. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_18

Download citation

Publish with us

Policies and ethics