Skip to main content
Log in

Linking Essential Tremor to the Cerebellum: Physiological Evidence

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography–magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ET:

Essential tremor

EMG:

Electromyography

MEG:

Magnetoencephalography

EOG:

Electrooculography

rTMS:

Repetitive transcranial magnetic stimulation

Vim:

Ventral intermediate nucleus of the thalamus

References

  1. Critchley M. Observations on essential (heredofamilial) tremor. Brain. 1949;72(2):113–39.

    Article  CAS  PubMed  Google Scholar 

  2. Deuschl G, Elble RJ. The pathophysiology of essential tremor. Neurology. 1999;54(11 Suppl 4):S14–20.

    Google Scholar 

  3. Busenbark KL, Nash J, Nash S, et al. Is essential tremor benign? Neurology. 1991;41(12):1982–82.

    Article  CAS  PubMed  Google Scholar 

  4. Louis ED, Benito-León J, Ottman R, Bermejo-Pareja F. A population-based study of mortality in essential tremor. Neurology. 2007;69(21):1982–9.

    Article  PubMed  Google Scholar 

  5. Lorenz D, Deuschl G. Update on pathogenesis and treatment of essential tremor. Curr Opin Neurol. 2007;20(4):447–52.

    Article  CAS  PubMed  Google Scholar 

  6. Elble RJ. The role of aging in the clinical expression of essential tremor. Exp Gerontol. 1995;30(3):337–47.

    Article  CAS  PubMed  Google Scholar 

  7. Wilms H, Sievers J, Deuschl G. Animal models of tremor. Mov Disord. 1999;14(4):557–71.

    Article  CAS  PubMed  Google Scholar 

  8. Nicoletti G, Manners D, Novellino F, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology. 2010;74(12):988–94.

    Article  CAS  PubMed  Google Scholar 

  9. Passamonti L, Cerasa A, Quattrone A. Neuroimaging of essential tremor: what is the evidence for cerebellar involvement? Tremor Other Hyperkinet Mov (N Y) 2012;2

  10. Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. Am J Neuroradiol. 2009;30(6):1240–3.

    Article  CAS  PubMed  Google Scholar 

  11. Louis ED, Vonsattel JPG. The emerging neuropathology of essential tremor. Mov Disord. 2008;23(2):174–82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stolze H, Petersen G, Raethjen J, et al. The gait disorder of advanced essential tremor. Brain. 2001;124(11):2278–86.

    Article  CAS  PubMed  Google Scholar 

  13. Deuschl G, Wenzelburger R, Löffler K, et al. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain. 2000;123(8):1568–80.

    Article  PubMed  Google Scholar 

  14. Raethjen J, Deuschl G. The oscillating central network of essential tremor. Clin Neurophysiol. 2012;123(1):61–4.

    Article  PubMed  Google Scholar 

  15. Shaikh AG, Miura K, Optican LM, et al. Hypothetical membrane mechanisms in essential tremor. J Transl Med. 2008;6(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dalal SS, Osipova D, Bertrand O, et al. Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev. 2013;37(4):585–93.

    Article  PubMed  Google Scholar 

  17. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78(3):272–303.

    Article  PubMed  Google Scholar 

  18. De Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58(5):655–8.

    Article  PubMed  Google Scholar 

  19. Lang EJ, Sugihara I, Llinás R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Neurophysiol. 2006;571(1):101–20.

    CAS  Google Scholar 

  20. Rowland NC, Goldberg JA, Jaeger D. Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience. 2010;166(2):698–711.

    Article  CAS  PubMed  Google Scholar 

  21. D’Angelo E, Koekkoek SKE, Lombardo P, et al. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162(3):805–15.

    Article  PubMed  Google Scholar 

  22. Niedermeyer E. The electrocerebellogram. Clin EEG Neurosci. 2004;35(2):112–5.

    Article  CAS  PubMed  Google Scholar 

  23. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93(4):2039–52.

    Article  PubMed  Google Scholar 

  24. Groß J, Timmermann L, Kujala J, et al. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A. 2002;99(4):2299–302.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schnitzler A, Münks C, Butz M, et al. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord. 2009;24(11):1629–35.

    Article  PubMed  Google Scholar 

  26. Pollok B, Butz M, Gross J, et al. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci. 2007;19(4):704–19.

    Article  PubMed  Google Scholar 

  27. Belardinelli P, Ciancetta L, Staudt M, et al. Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions. NeuroImage. 2007;37(4):1301–14.

    Article  CAS  PubMed  Google Scholar 

  28. Raethjen J, Govindan RB, Kopper F, et al. Cortical involvement in the generation of essential tremor. J Neurophysiol. 2007;97(5):3219–28.

    Article  PubMed  Google Scholar 

  29. Hua SE, Lenz FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol. 2005;93(1):117–27.

    Article  PubMed  Google Scholar 

  30. Deuschl G, Bergman H. Pathophysiology of nonparkinsonian tremors. Mov Disord. 2002;17(S3):S41–8.

    Article  PubMed  Google Scholar 

  31. Macchi G, Jones EG. Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg. 1997;86(4):670–85.

    Article  CAS  PubMed  Google Scholar 

  32. Molnar GF, Pilliar A, Lozano AM, et al. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease, essential tremor, and pain. J Neurophysiol. 2005;93(6):3094–101.

    Article  CAS  PubMed  Google Scholar 

  33. Flora ED, Perera CL, Cameron AL, et al. Deep brain stimulation for essential tremor: a systematic review. Mov Disord. 2010;25(11):1550–9.

    Article  PubMed  Google Scholar 

  34. Dupuis MJM, Evrard FLA, Jacquerye PG, et al. Disappearance of essential tremor after stroke. Mov Disord. 2010;25(16):2884–7.

    Article  PubMed  Google Scholar 

  35. Lamarre Y. Central mechanisms of experimental tremor and their clinical relevance. Neurol Dis Ther. 1994;30:103–03.

    Google Scholar 

  36. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315(1):549–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73(4):1329–40.

    CAS  PubMed  Google Scholar 

  38. Kronenbuerger M, Gerwig M, Brol B, et al. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130(6):1538–51.

    Article  PubMed  Google Scholar 

  39. Kronenbuerger M, Tronnier VM, Gerwig M, et al. Thalamic deep brain stimulation improves eyeblink conditioning deficits in essential tremor. Exp Neurol. 2008;211(2):387–96.

    Article  CAS  PubMed  Google Scholar 

  40. Hellwig B, Häußler S, Schelter B, et al. Tremor-correlated cortical activity in essential tremor. Lancet. 2001;357(9255):519–23.

    Article  CAS  PubMed  Google Scholar 

  41. Minks E, Kopickova M, Marecek R, et al. Transcranial magnetic stimulation of the cerebellum. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):133–9.

    Article  PubMed  Google Scholar 

  42. Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–403.

    Article  CAS  PubMed  Google Scholar 

  43. Gironell A, Kulisevsky J, Lorenzo J, et al. Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study. Arch Neurol. 2002;59(3):413–7.

    Article  PubMed  Google Scholar 

  44. Pinto AD, Lang AE, Chen R. The cerebellothalamocortical pathway in essential tremor. Neurology. 2003;60(12):1985–7.

    Article  PubMed  Google Scholar 

  45. Hua SE, Lenz FA, Zirh TA, et al. Thalamic neuronal activity correlated with essential tremor. J Neurol Neurosurg Psychiatry. 1998;64(2):273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berardelli A, Hallett M, Rothwell JC, et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(2):661–74.

    Article  PubMed  Google Scholar 

  47. Brown SH, Cooke JD. Movement-related phasic muscle activation. I. Relations with temporal profile of movement. J Neurophysiol. 1990;63(3):455–64.

    CAS  PubMed  Google Scholar 

  48. Britton TC, Thompson PD, Day BL, et al. Rapid wrist movements in patients with essential tremor. The critical role of the second agonist burst. Brain. 1994;117(1):39–47.

    Article  PubMed  Google Scholar 

  49. Köster B, Deuschl G, Lauk M, et al. Essential tremor and cerebellar dysfunction: abnormal ballistic movements. J Neurol Neurosurg Psychiatry. 2002;73(4):400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bares M, Lungu O, Liu T, et al. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.

    Article  PubMed  Google Scholar 

  51. Bareš M, Lungu OV, Husárová I, et al. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum. 2010;9(1):124–35.

    Article  PubMed  Google Scholar 

  52. Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinet Mov. 2012;2:1–9.

    Google Scholar 

  53. Zackowski KM, Bastian AJ, Hakimian S, et al. Thalamic stimulation reduces essential tremor but not the delayed antagonist muscle timing. Neurology. 2002;58(3):402–10.

    Article  CAS  PubMed  Google Scholar 

  54. Elble RJ, Higgins C, Hughes L. Essential tremor entrains rapid voluntary movements. Exp Neurol. 1994;126:138–43.

    Article  CAS  PubMed  Google Scholar 

  55. Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.

    Article  PubMed  Google Scholar 

  56. Helmchen C, Hagenow A, Miesner J, et al. Eye movement abnormalities in essential tremor may indicate cerebellar dysfunction. Brain. 2003;126(6):1319–32.

    Article  CAS  PubMed  Google Scholar 

  57. Heide W, Kurzidim K, Kömpf D. Deficits of smooth pursuit eye movements after frontal and parietal lesions. Brain. 1996;119(6):1951–69.

    Article  PubMed  Google Scholar 

  58. Moschner C, Perlman S, Baloh RW. Comparison of oculomotor findings in the progressive ataxia syndromes. Brain. 1994;117(1):15–25.

    Article  PubMed  Google Scholar 

  59. Wessel K, Moschner C, Wandinger K-P, et al. Oculomotor testing in the differential diagnosis of degenerative ataxic disorders. Arch Neurol. 1998;55(7):949–56.

    Article  CAS  PubMed  Google Scholar 

  60. Heinen SJ, Keller EL. The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res. 1996;110(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  61. Heide W, Schrader V, Koenig E, et al. Impaired discharge of the eye velocity storage mechanism in patients with lesions of the vestibulo-cerebellum. Adv Oto Rhino Laryngol. 1988;41:44.

    Article  CAS  Google Scholar 

  62. Glickstein M, Gerrits N, Kralj-Hans I, et al. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349(1):51–72.

    Article  CAS  PubMed  Google Scholar 

  63. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.

    Article  PubMed  Google Scholar 

  64. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.

    Article  PubMed  Google Scholar 

  65. Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–76.

    Article  PubMed  Google Scholar 

  66. Benito-León J, Alvarez-Linera J, Hernández-Tamames JA, et al. Brain structural changes in essential tremor: voxel-based morphometry at 3-tesla. J Neurol Sci. 2009;287(1):138–42.

    Article  PubMed  Google Scholar 

  67. Shill HA, Adler CH, Sabbagh MN, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology. 2008;70(16):1452–5. Part 2.

    Article  CAS  PubMed  Google Scholar 

  68. Deuschl G, Elble R. Essential tremor—neurodegenerative or nondegenerative disease towards a working definition of ET. Mov Disord. 2009;24(14):2033–41.

    Article  PubMed  Google Scholar 

  69. Klebe S, Stolze H, Grensing K, et al. Influence of alcohol on gait in patients with essential tremor. Neurology. 2005;65(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  70. Manto M, Laute MA. A possible mechanism for the beneficial effect of ethanol in essential tremor. Eur J Neurol. 2008;15(7):697–705.

    Article  CAS  PubMed  Google Scholar 

  71. Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord. 2013;28(13):1759–61.

    Article  PubMed  Google Scholar 

  72. Lamarre Y. Animal models of physiological, essential and parkinsonian-like tremors. Mov Disord: Tremor. 1984;183–94.

  73. Hirai T, Miyazaki M, Nakajima H, et al. The correlation between tremor characteristics and the predicted volume of effective lesions in stereotaxic nucleus ventralis intermedius thalamotomy. Brain. 1983;106(4):1001–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bareš.

Ethics declarations

Conflict of Interest

There are no potential conflict of interests regarding this paper and no financial or personal relationships that might bias this work.

Funding

This work was supported by the “CEITEC—Central European Institute of Technology” project (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, P., Lungu, O.V., Manto, MU. et al. Linking Essential Tremor to the Cerebellum: Physiological Evidence. Cerebellum 15, 774–780 (2016). https://doi.org/10.1007/s12311-015-0740-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0740-2

Keywords

Navigation