Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28

Abstract

Autosomal dominant optic atrophy (ADOA) is the most prevalent hereditary optic neuropathy resulting in progressive loss of visual acuity, centrocoecal scotoma and bilateral temporal atrophy of the optic nerve with an onset within the first two decades of life1,2. The predominant locus for this disorder (OPA1; MIM 165500) has been mapped to a 1.4-cM interval on chromosome 3q28–q29 flanked by markers D3S3669 and D3S3562 (ref. 3). We established a PAC contig covering the entire OPA1 candidate region of approximately 1 Mb and a sequence skimming approach allowed us to identify a gene encoding a polypeptide of 960 amino acids with homology to dynamin-related GTPases. The gene comprises 28 coding exons and spans more than 40 kb of genomic sequence. Upon sequence analysis, we identified mutations in seven independent families with ADOA. The mutations include missense and nonsense alterations, deletions and insertions, which all segregate with the disease in these families. Because most mutations probably represent null alleles, dominant inheritance of the disease may result from haploinsufficiency of OPA1. OPA1 is widely expressed and is most abundant in the retina. The presence of consensus signal peptide sequences suggests that the product of the gene OPA1 is targeted to mitochondria and may exert its function in mitochondrial biogenesis and stabilization of mitochondrial membrane integrity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the OPA1 interval and the genomic structure of OPA1.
Figure 2: Expression pattern of OPA1.
Figure 3: Mutations in patients with ADOA and co-segregation analysis of the mutations.
Figure 4: Key functional features of OPA1 primary structure.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hoyt, C.S. Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 87, 245–251 ( 1980).

    Article  CAS  Google Scholar 

  2. Votruba, M. et al. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch. Ophthalmol. 116, 351–358 (1998).

    Article  CAS  Google Scholar 

  3. Jonasdottir, A., Eiberg, H., Kjer, B., Kjer, P. & Rosenberg, T. Refinement of the dominant optic atrophy locus (OPA1) to a 1.4-cM interval on chromosome 3q28–3q29, within a 3-Mb YAC contig . Hum. Genet. 99, 115–120 (1997).

    Article  CAS  Google Scholar 

  4. Kivlin, J.D., Lovrien, E.W., Bishop, D.T. & Maumenee, I.H. Linkage analysis in dominant optic atrophy. Am. J. Hum. Genet. 35, 1190–1195 ( 1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kjer, B., Eiberg, H., Kjer, P. & Rosenberg, T. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects . Acta Ophthalmol. Scand. 1996 74, 3– 7 (1996).

    Article  CAS  Google Scholar 

  6. Lyle, W.M. Genetic Risks (University of Waterloo Press, Waterloo, Ontario, 1990).

    Google Scholar 

  7. Johnston, R.L., Seller, M.J., Behnam, J.T., Burdon, M.A. & Spalton, D.J. Dominant optic atrophy. Refining the clinical diagnostic criteria in light of genetic linkage studies. Ophthalmology 106, 123–128 (1999).

    Article  CAS  Google Scholar 

  8. Johnston, P.B., Gaster, R.N., Smith, V.C. & Tripathi, R.C. A clinicopathologic study of autosomal dominant optic atrophy. Am. J. Ophthalmol. 88, 868–875 (1979).

    Article  CAS  Google Scholar 

  9. Kjer, P., Jensen, O.A. & Klinken, L. Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol. (Copenh) 61, 300–312 (1983).

    Article  CAS  Google Scholar 

  10. Eiberg, H., Kjer, B., Kjer, P. & Rosenberg, T. Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum. Mol. Genet. 3, 977–980 (1994).

    Article  CAS  Google Scholar 

  11. Brown, J. et al. Clinical and genetic analysis of a family affected with dominant optic atrophy. Arch. Ophthalmol. 115, 95 –99 (1997).

    Article  Google Scholar 

  12. Kerrison, J.B. et al. Genetic heterogeneity of dominant optic atrophy, Kjer type: identification of a second locus on chromosome 18q12.2–12.3. Arch. Ophthalmol. 117, 805–810 (1999).

    Article  CAS  Google Scholar 

  13. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 5, 355 –364 (1998).

    Article  CAS  Google Scholar 

  14. Lunkes et al. Refinement of the OPA1 gene locus on chromosome 3q28–q29 to a region of 2–8 cM, in one Cuban pedigree with autosomal dominant optic atrophy Type Kjer. Am. J. Hum. Genet. 57, 968– 970 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Branda, S. et al. Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J. Biol. Chem. 274, 22763–22769 (1999).

    Article  CAS  Google Scholar 

  16. Kubakawa, K., Miyashita, T. & Kubo, Y. Isolation of a cDNA for a novel 120-kDa GTP-binding protein expressed in motor neurons in the salmon brain. FEBS Lett. 431, 231–235 ( 1998).

    Article  Google Scholar 

  17. Muhlberg, A.B., Warnock, D.E. & Schmid, S.L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676– 6683 (1997).

    Article  CAS  Google Scholar 

  18. McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 ( 2000).

    Article  CAS  Google Scholar 

  19. Guan, K., Farh, L., Marshall, T.K. & Deschenes, R.J. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr. Genet. 24, 141– 148 (1993).

    Article  CAS  Google Scholar 

  20. Kamimoto, T. et al. Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Cell. Biol. Chem. 273, 1044–1051 (1998).

    CAS  Google Scholar 

  21. Smirnova, E., Shurland, D.L., Ryazantsev, S.N. & van der Bliek, A.M. A human dynamin-related protein controls the distribution of mitochondria . J. Cell Biol. 143, 351– 358 (1998).

    Article  CAS  Google Scholar 

  22. Shepard, K.A. & Yaffe, M.P. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J. Cell Biol. 144, 711– 720 (1999).

    Article  CAS  Google Scholar 

  23. Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biol. 1, 298– 304 (1999).

    Article  CAS  Google Scholar 

  24. Pelloquin, L., Belenguer, P., Menon, Y. & Ducommun, B. Identification of a fission yeast dynamin-related protein involved in mitochondrial DNA maintenance . Biochem. Biophys. Res. Commun. 251, 720 –726 (1998).

    Article  CAS  Google Scholar 

  25. Riordan-Eva, P. et al. The clinical features of Leber's hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial mutation. Brain 118, 319–337 ( 1995).

    Article  Google Scholar 

  26. Wallace, D.C. et al. Mitochondrial DNA mutations associated with Leber's hereditary optic neuropathy. Science 242, 1427– 1430 (1988).

    Article  CAS  Google Scholar 

  27. Staden, R., Beal, K.F. & Bonfield, J.K. The Staden package, 1998. Methods Mol. Biol. 132, 115–130 ( 2000).

    CAS  PubMed  Google Scholar 

  28. Breathnach, R. & Chambon, P. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all clinicians who referred patients; the patients and their family members for participation; T. Nagase for the KIAA0567 full-length cDNA clone; B. Jurklies and H. Wilhelm for the collection of additional families; C. Willis for help with UK pedigree and sample collection; B. Baumann and S. Tippmann for technical assistance; S. Kohl for help with the SSCP analysis; and C. Pusch for various technical and computational advice. This work was supported by The Wellcome Trust, UK Project Grant 056047 (M.V., S.S.B. and A.M.), The Guide Dogs for the Blind Association, The Joint British Council/DAAD Academic Research Collaboration Programme ARC 1074 (M.V. & B.W.), and a grant from the Bundesministerium fuer Bildung und Forschung (01 KS 9602) and the Interdisziplinaeres Zentrum fuer Klinische Forschung Tuebingen (B.W.). C.A. is supported by a fellowship of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shomi S. Bhattacharya or Bernd Wissinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, C., Votruba, M., Pesch, U. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26, 211–215 (2000). https://doi.org/10.1038/79944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79944

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing