Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome

Abstract

Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome (OMIM 604168) is an autosomal recessive developmental disorder that occurs in an endogamous group of Vlax Roma (Gypsies; refs. 13). We previously localized the gene associated with CCFDN to 18qter, where a conserved haplotype suggested a single founder mutation4. In this study, we used recombination mapping to refine the gene position to a 155-kb critical interval. During haplotype analysis, we found that the non-transmitted chromosomes of some unaffected parents carried the conserved haplotype associated with the disease. Assuming such parents to be completely homozygous across the critical interval except with respect to the disease-causing mutation, we developed a new 'not quite identical by descent' (NQIBD) approach, which allowed us to identify the mutation causing the disease by sequencing DNA from a single unaffected homozygous parent. We show that CCFDN is caused by a single-nucleotide substitution in an antisense Alu element in intron 6 of CTDP1 (encoding the protein phosphatase FCP1, an essential component of the eukaryotic transcription machinery5,6), resulting in a rare mechanism of aberrant splicing and an Alu insertion in the processed mRNA. CCFDN thus joins the group of 'transcription syndromes'7 and is the first 'purely' transcriptional defect identified that affects polymerase II–mediated gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fine mapping of the gene associated with CCFDN on 18qter.
Figure 2: NQIBD analysis.
Figure 3: The only difference between NQIBD chromosomes is a single-nucleotide substitution in an intronic Alu element.
Figure 4: The Alu C→T mutation causes aberrant splicing of CTDP1.

Similar content being viewed by others

References

  1. Tournev, I. et al. Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN) syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Ann. Neurol. 45, 742–750 (1999).

    Article  CAS  Google Scholar 

  2. Tournev, I., King, R., Muddle, J., Kalaydjieva, L. & Thomas, P.K. Peripheral nerve abnormalities in the congenital cataract facial dysmorphism neuropathy (CCFDN) syndrome. Acta Neuropathol. (Berlin) 98, 165–170 (1999).

    Article  CAS  Google Scholar 

  3. Merlini, L. et al. Genetic identity of Marinesco-Sjogren/myoglobinuria and CCFDN syndromes. Neurology 58, 231–236 (2002).

    Article  CAS  Google Scholar 

  4. Angelicheva, D., Tournev, I., Dye, D., Chandler, D., Thomas, P.K. & Kalaydjieva, L. Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome: a novel developmental disorder in Gypsies maps to 18qter. Eur. J. Hum. Genet. 7, 560–566 (1999).

    Article  CAS  Google Scholar 

  5. Chambers, R.S. & Dahmus, M.E. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J. Biol. Chem. 269, 26243–26248 (1994).

    CAS  PubMed  Google Scholar 

  6. Archambault, J. et al. An essential component of a C-terminal domain phosphatase that interacts with transcription factor TFIIF in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 14300–14305 (1997).

    Article  CAS  Google Scholar 

  7. Vermeulen, W. et al. Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb. Symp. Quant. Biol. 59, 317–329 (1994).

    Article  CAS  Google Scholar 

  8. Müller-Felber, W. et al. Marinesco-Sjögren syndrome with rhabdomyolysis. A new subtype of the disease. Neuropediatrics 29, 97–101 (1998).

    Article  Google Scholar 

  9. Kalaydjieva, L., Gresham, D. & Calafell, F. Genetic studies of the Roma (Gypsies): a review. BMC Med. Genet. 2, 5 (2001).

    Article  CAS  Google Scholar 

  10. Kalaydjieva, L. et al. Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages. Eur. J. Hum. Genet. 9, 97–104 (2001).

    Article  CAS  Google Scholar 

  11. Gresham, D. et al. Origins and divergence of the Roma (Gypsies). Am. J. Hum. Genet. 69, 1314–1331 (2001).

    Article  CAS  Google Scholar 

  12. Mitchell, G.A. et al. Splice-mediated insertion of an Alu sequence inactivates ornithine Δ-aminotransferase: A role for Alu elements in human mutation. Proc. Natl. Acad. Sci. USA 88, 815–819 (1991).

    Article  CAS  Google Scholar 

  13. Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3′ splice site selection in Alu exons. Science 300, 1288–1291 (2003).

    Article  CAS  Google Scholar 

  14. Licciardo, P., Ruggiero, L., Lania, L. & Majello, B. Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res. 29, 3539–3545 (2001).

    Article  CAS  Google Scholar 

  15. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  16. Chambers, R.S., Wang, B.Q., Burton, Z.F. & Dahmus, M.E. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J. Biol. Chem. 270, 14962–14969 (1995).

    Article  CAS  Google Scholar 

  17. Cho, H. et al. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev. 13, 1540–1552 (1999).

    Article  CAS  Google Scholar 

  18. Cho, H., Kobor, M., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes & Dev. 15, 3319–3329 (2001).

    Article  CAS  Google Scholar 

  19. Mandal, S.S., Cho, H., Kim, S., Cabane, K. & Reinberg, D. FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol. Cell. Biol. 22, 7543–7552 (2002).

    Article  CAS  Google Scholar 

  20. Hengartner, C.J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43–53 (1998).

    Article  CAS  Google Scholar 

  21. Washington, K. et al. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase 2. J. Biol. Chem. 277, 40442–40448 (2002).

    Article  CAS  Google Scholar 

  22. Yeo, M., Lin, P.S., Dahmus, M.S. & Gill, G.N. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078–26085 (2003).

    Article  CAS  Google Scholar 

  23. Lagier-Tourenne, C. et al. Homozygosity mapping of Marinesco-Sjögren syndrome to 5q31. Eur. J. Hum. Genet. (in the press).

  24. Cottingham, R.W., Idury, R.M. & Shaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  25. Lathrop, G.M. & Lalouel, J.-M. Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kruglyak, L., Daly, M.J. & Lander, E.S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. Hum. Genet. 56, 519–527 (1995).

    CAS  Google Scholar 

  27. Reeve, J.P. & Rannala, B. DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics 18, 894–895 (2002).

    Article  CAS  Google Scholar 

  28. Hunter, M. et al. The P28T mutation in the GALK1 gene accounts for galactokinase deficiency in Roma (Gypsy) patients across Europe. Pediatr. Res. 51, 602–606 (2002).

    Article  CAS  Google Scholar 

  29. Nachman, M.W. & Crowell, S. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rogozin, I.B. & Pavlov, Y.I. Theoretical analysis of mutation hotspots and their DNA sequence specificity. Mutat. Res. 544, 65–85 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank affected individuals and their families for participating in this project; A. Corches, C. Lupu, M. Molnar, A. Kelemen, P. Seeman, V. Milic-Rasic for referring individuals with CCFDN; M. Delatycki, K. Jones, J. Colomer and T. Ishikawa for referring individuals with MSS; K. Sperling and J. Kunze for supporting this study; J. Reeve for help with the DMLE+ software; A. Usheva for discussions; N. Laing for critical comments on the manuscript; and D. Chandler and I. Martins for technical help. The study was funded by the National Health and Medical Research Council of Australia, The Wellcome Trust, the Australian Research Council, the Deutsche Forschungsgemeinschaft and partly by the German Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luba Kalaydjieva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varon, R., Gooding, R., Steglich, C. et al. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet 35, 185–189 (2003). https://doi.org/10.1038/ng1243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing