Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein

Abstract

The role of autoantibodies in the pathogenesis of multiple sclerosis (MS) and other demyelinating diseases is controversial, in part because widely used western blotting and ELISA methods either do not permit the detection of conformation-sensitive antibodies or do not distinguish them from conformation-independent antibodies. We developed a sensitive assay based on self-assembling radiolabeled tetramers that allows discrimination of antibodies against folded or denatured myelin oligodendrocyte glycoprotein (MOG) by selective unfolding of the antigen domain. The tetramer radioimmunoassay (RIA) was more sensitive for MOG autoantibody detection than other methodologies, including monomer-based RIA, ELISA or fluorescent-activated cell sorting (FACS). Autoantibodies from individuals with acute disseminated encephalomyelitis (ADEM) selectively bound the folded MOG tetramer, whereas sera from mice with experimental autoimmune encephalomyelitis induced with MOG peptide immunoprecipitated only the unfolded tetramer. MOG-specific autoantibodies were identified in a subset of ADEM but only rarely in adult-onset MS cases, indicating that MOG is a more prominent target antigen in ADEM than MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of tetrameric antigens for RIA.
Figure 2: Analysis of MOG autoantibodies in CNS diseases.
Figure 3: The tetramer RIA permits discrimination of antibodies directed against conformation-dependent and conformation-independent epitopes.
Figure 4: Comparison of tetramer RIA to other autoantibody assays.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Linington, C., Bradl, M., Lassmann, H., Brunner, C. & Vass, K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol. 130, 443–454 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schluesener, H.J., Sobel, R.A., Linington, C. & Weiner, H.L. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol. 139, 4016–4021 (1987).

    CAS  PubMed  Google Scholar 

  3. Genain, C.P. et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J. Clin. Invest. 96, 2966–2974 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hjelmstrom, P., Juedes, A.E., Fjell, J. & Ruddle, N.H. B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J. Immunol. 161, 4480–4483 (1998).

    CAS  PubMed  Google Scholar 

  5. Berger, T. et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med. 349, 139–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Lampasona, V. et al. Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 62, 2092–2094 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lim, E.T. et al. Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult. Scler. 11, 492–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Reindl, M. et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122, 2047–2056 (1999).

    Article  PubMed  Google Scholar 

  9. Thompson, E.J., Kaufmann, P., Shortman, R.C., Rudge, P. & McDonald, W.I. Oligoclonal immunoglobulins and plasma cells in spinal fluid of patients with multiple sclerosis. Br. Med. J. 1, 16–17 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lennon, V.A., Kryzer, T.J., Pittock, S.J., Verkman, A.S. & Hinson, S.R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wingerchuk, D.M. Postinfectious encephalomyelitis. Curr. Neurol. Neurosci. Rep. 3, 256–264 (2003).

    Article  PubMed  Google Scholar 

  12. Javier, R.S., Kunishita, T., Koike, F. & Tabira, T. Semple rabies vaccine: presence of myelin basic protein and proteolipid protein and its activity in experimental allergic encephalomyelitis. J. Neurol. Sci. 93, 221–230 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Hemachudha, T. et al. Myelin basic protein as an encephalitogen in encephalomyelitis and polyneuritis following rabies vaccination. N. Engl. J. Med. 316, 369–374 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Idrissova, Zh.R. et al. Acute disseminated encephalomyelitis in children: clinical features and HLA-DR linkage. Eur. J. Neurol. 10, 537–546 (2003).

    Article  PubMed  Google Scholar 

  15. Menge, T. et al. Acute disseminated encephalomyelitis: an update. Arch. Neurol. 62, 1673–1680 (2005).

    Article  PubMed  Google Scholar 

  16. Johnson, R.T. et al. Measles encephalomyelitis–clinical and immunologic studies. N. Engl. J. Med. 310, 137–141 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. Lisak, R.P., Behan, P.O., Zweiman, B. & Shetty, T. Cell-mediated immunity to myelin basic protein in acute disseminated encephalomyelitis. Neurology 24, 560–564 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Pohl-Koppe, A., Burchett, S.K., Thiele, E.A. & Hafler, D.A. Myelin basic protein reactive Th2 T cells are found in acute disseminated encephalomyelitis. J. Neuroimmunol. 91, 19–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. von Budingen, H.C. et al. Epitope recognition on the myelin/oligodendrocyte glycoprotein differentially influences disease phenotype and antibody effector functions in autoimmune demyelination. Eur. J. Immunol. 34, 2072–2083 (2004).

    Article  PubMed  Google Scholar 

  20. Brehm, U., Piddlesden, S.J., Gardinier, M.V. & Linington, C. Epitope specificity of demyelinating monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein (MOG). J. Neuroimmunol. 97, 9–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Mathey, E., Breithaupt, C., Schubart, A.S. & Linington, C. Commentary: sorting the wheat from the chaff: identifying demyelinating components of the myelin oligodendrocyte glycoprotein (MOG)-specific autoantibody repertoire. Eur. J. Immunol. 34, 2065–2071 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. LaGasse, J.M. et al. Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction Study. Diabetes Care 25, 505–511 (2002).

    Article  PubMed  Google Scholar 

  23. Barker, J.M. et al. Prediction of autoantibody positivity and progression to type 1 diabetes: diabetes autoimmunity study in the young (DAISY). J. Clin. Endocrinol. Metab. 89, 3896–3902 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Fossati-Jimack, L. et al. High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J. Exp. Med. 190, 1689–1696 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Call, M.E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K.W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Connor, K.C. et al. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol. 175, 1974–1982 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lalive, P.H. et al. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc. Natl. Acad. Sci. USA 103, 2280–2285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchioni, E. et al. Postinfectious inflammatory disorders: subgroups based on prospective follow-up. Neurology 65, 1057–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kanter, D.S. et al. Plasmapheresis in fulminant acute disseminated encephalomyelitis. Neurology 45, 824–827 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Khurana, D.S. et al. Acute disseminated encephalomyelitis in children: discordant neurologic and neuroimaging abnormalities and response to plasmapheresis. Pediatrics 116, 431–436 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kozak (University of Medicine and Dentistry of New Jersey) for providing the modified pSP64 plasmid vector. These studies were supported by grants from the US National Institutes of Health to K.W.W. (P01 AI045757) and D.A.H. (U01DK6192601, R01NS2424710, P01AI39671 and P01NS38037); grants from the National Multiple Sclerosis Society to D.A.H. (RG2172C9 and RG3308A10); a Career Transition Fellowship awarded to K.C.O. by the National Multiple Sclerosis Society (TA 3000A2/1); and a National Multiple Sclerosis Society Pediatric Multiple Sclerosis Center Program Project Grant to T.C. P.L.D. is a William C. Fowler scholar in Multiple Sclerosis and is supported by a National Institutes of Health National Institute of Neurological Disorders and Stroke K08 grant. P.L.D. is also supported by the Clinical Investigator Training Program (Harvard-MIT Health Sciences and Technology, Beth Israel Deaconess Medical Center, and Pfizer).

Author information

Authors and Affiliations

Authors

Contributions

K.C.O. performed the initial analysis of ADEM serum samples and coordinated specimen collection. K.A.M. generated the MOG tetramer, performed most of the RIA experiments and generated the MOG transfectant. D.A.H. and K.W.W. coinitiated and cosupervised the entire project, and K.W.W. conceived the tetramer approach. P.L.D. and T.C. compiled and analyzed clinical data. Other authors contributed specimens, clinical information or key reagents.

Corresponding authors

Correspondence to David A Hafler or Kai W Wucherpfennig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of RIA and ELISA for detection of monoclonal versus polyclonal antibodies to MOG. (PDF 704 kb)

Supplementary Fig. 2

FACS analysis of MOG-GFP transfectant labeled with ADEM and pediatric MS sera (PDF 836 kb)

Supplementary Table 1

Classification of “Other” CSF samples (PDF 13 kb)

Supplementary Table 2

Treatment of MS and CIS patients (PDF 12 kb)

Supplementary Table 3

Detection of antibodies to MOG by FACS (% of positive cells) (PDF 25 kb)

Supplementary Table 4

Comparison of RIA and FACS (PDF 9 kb)

Supplementary Table 5

Comparison of RIA and ELISA (PDF 13 kb)

Supplementary Table 6

Comparison of MOG+ and MOG ADEM (PDF 49 kb)

Supplementary Methods (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, K., McLaughlin, K., De Jager, P. et al. Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med 13, 211–217 (2007). https://doi.org/10.1038/nm1488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing