Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood

Abstract

Mild traumatic brain injury (TBI), which is defined as a head trauma resulting in a brief loss of consciousness and/or alteration of mental state, is usually benign, but occasionally causes persistent and sometimes progressive symptoms. Whether a threshold for the amount of brain injury and/or individual vulnerability might contribute to the development of these long-term consequences is unknown. Furthermore, reliable diagnostic methods that can establish whether a blow to the head has affected the brain (and in what way) are lacking. In this Review, we discuss potential biomarkers of injury to different structures and cell types in the CNS that can be detected in body fluids. We present arguments in support of the need for further development and validation of such biomarkers, and for their use in assessing patients with head trauma in whom the brain might have been affected. Specifically, we focus on the need for such biomarkers in the management of sports-related concussion, the most common cause of mild TBI in young individuals, to prevent long-term neurological sequelae due to concussive or subconcussive blows to the head.

Key Points

  • Biomarkers of neuronal, axonal and astroglial damage could be used to diagnose mild traumatic brain injury (TBI) and predict clinical outcomes of patients with head trauma

  • Such biomarkers could provide important information for medical counselling of at-risk individuals, such as military personnel and concussed athletes

  • Cerebrospinal fluid markers are preferred over peripheral blood markers, owing to their increased proximity to the brain and decreased susceptibility to the confounding effects of various extracerebral factors

  • Ultrasensitive assays are needed for reliable quantification of CNS-specific biomarkers in blood, as their concentrations are below the lower limit of detection by most standard immunoassays

  • Clinical studies of serial biomarker measurements in conjunction with advanced brain imaging during the acute and subacute phases of mild TBI are warranted

  • Longitudinal studies of biomarkers in patients with chronic or progressive symptoms after TBI might help to clarify the pathogenesis and clinical course of chronic traumatic encephalopathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible biomarkers of traumatic brain injury.

Similar content being viewed by others

References

  1. Roozenbeek, B., Maas, A. I. & Menon, D. K. Opinion: Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. http://dx.doi/org/nrneurol.2013.22

  2. American Congress of Rehabilitation Medicine. Definition of mild traumatic brain injury. J. Head Trauma Rehabil. 8, 86–87 (1993).

  3. Blumbergs, P. C. et al. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 344, 1055–1056 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Browne, K. D., Chen, X. H., Meaney, D. F. & Smith, D. H. Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma 28, 1747–1755 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baugh, C. M. et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 6, 244–254 (2012).

    Article  PubMed  Google Scholar 

  6. Gavett, B. E., Stern, R. A. & McKee, A. C. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med. 30, 179–188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4, 134ra160 (2012).

    Google Scholar 

  8. McCrory, P. et al. Consensus statement on concussion in sport—the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Phys. Sportsmed. 37, 141–159 (2009).

    Article  PubMed  Google Scholar 

  9. Røe, C., Sveen, U., Alvsåker, K. & Bautz-Holter, E. Post-concussion symptoms after mild traumatic brain injury: influence of demographic factors and injury severity in a 1-year cohort study. Disabil. Rehabil. 31, 1235–1243 (2009).

    Article  PubMed  Google Scholar 

  10. Williams, W. H., Potter, S. & Ryland, H. Mild traumatic brain injury and postconcussion syndrome: a neuropsychological perspective. J. Neurol. Neurosurg. Psychiatry 81, 1116–1122 (2010).

    Article  PubMed  Google Scholar 

  11. Meaney, D. F. & Smith, D. H. Biomechanics of concussion. Clin. Sports Med. 30, 19–31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith, D. H. & Meaney, D. F. Axonal damage in traumatic brain injury. The Neuroscientist 6, 483–495 (2000).

    Article  Google Scholar 

  13. Johnson, V. E., Stewart, W. & Smith, D. H. Axonal pathology in traumatic brain injury. Exp. Neurol. (2012).

  14. Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. & Smith, D. H. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21, 1923–1930 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saatman, K. E., Creed, J. & Raghupathi, R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics 7, 31–42 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giza, C. C. & Hovda, D. A. The neurometabolic cascade of concussion. J. Athl. Train. 36, 228–235 (2001).

    PubMed  PubMed Central  Google Scholar 

  17. Barkhoudarian, G., Hovda, D. A. & Giza, C. C. The molecular pathophysiology of concussive brain injury. Clin. Sports Med. 30, 33–48 (2011).

    Article  PubMed  Google Scholar 

  18. Tang-Schomer, M. D., Patel, A. R., Baas, P. W. & Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24, 1401–1410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W. & Smith, D. H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 233, 364–372 (2012).

    Article  PubMed  Google Scholar 

  20. Povlishock, J. T., Becker, D. P., Cheng, C. L. & Vaughan, G. W. Axonal change in minor head injury. J. Neuropathol. Exp. Neurol. 42, 225–242 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Povlishock, J. T. & Becker, D. P. Fate of reactive axonal swellings induced by head injury. Lab. Invest. 52, 540–552 (1985).

    CAS  PubMed  Google Scholar 

  22. Chen, X. H. et al. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lipton, M. L. et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J. Neurotrauma 25, 1335–1342 (2008).

    Article  PubMed  Google Scholar 

  24. Niogi, S. N. et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am. J. Neuroradiol. 29, 967–973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilde, E. A. et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 70, 948–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. New Zealand Guidelines Group Staff, Accident Compensation Corporation (N. Z.) Staff. Traumatic Brain Injury: Diagnosis, Acute Management and Rehabilitation (Accident Compensation Corporation, New Zealand, 2006).

  27. Iverson, G. L., Gaetz, M., Lovell, M. R. & Collins, M. W. Cumulative effects of concussion in amateur athletes. Brain Inj. 18, 433–443 (2004).

    Article  PubMed  Google Scholar 

  28. Brooks, W. M. et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J. Neurotrauma 17, 629–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Anderson, V., Catroppa, C., Morse, S., Haritou, F. & Rosenfeld, J. Recovery of intellectual ability following traumatic brain injury in childhood: impact of injury severity and age at injury. Pediatr. Neurosurg. 32, 282–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Prins, M. L. & Hovda, D. A. Developing experimental models to address traumatic brain injury in children. J. Neurotrauma 20, 123–137 (2003).

    Article  PubMed  Google Scholar 

  31. Duhaime, A. C. Large animal models of traumatic injury to the immature brain. Dev. Neurosci. 28, 380–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Pinto, P. S., Meoded, A., Poretti, A., Tekes, A. & Huisman, T. A. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications, and their imaging findings—part 2. J. Neuroimaging 22, e18–e41 (2012).

    Article  PubMed  Google Scholar 

  33. Pinto, P. S., Poretti, A., Meoded, A., Tekes, A. & Huisman, T. A. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings—part 1. J. Neuroimaging 22, e1–e17 (2012).

    Article  PubMed  Google Scholar 

  34. Martland, H. Punch drunk. JAMA 91, 1103–1107 (1928).

    Article  Google Scholar 

  35. Roberts, A. H. Brain Damage in Boxers: a Study of the Prevalence of Traumatic Encephalopathy Among Ex-Professional Boxers (Pitman Medical Scientific Publications, London, 1969).

    Google Scholar 

  36. Jordan, B. D. et al. Apolipoprotein E ε4 associated with chronic traumatic brain injury in boxing. JAMA 278, 136–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Stern, R. A. et al. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R 3, S460–S467 (2011).

    Article  PubMed  Google Scholar 

  38. Smith, D. H., Johnson, V. E. & Stewart, W. The chronic neuropathologies of single and repetitive traumatic brain injury: potential substrates of dementia? Nat. Rev. Neurol. (in press).

  39. Gavett, B. E. et al. Clinical appraisal of chronic traumatic encephalopathy: current perspectives and future directions. Curr. Opin. Neurol. 24, 525–531 (2011).

    Article  PubMed  Google Scholar 

  40. Jordan, B. D. Chronic traumatic brain injury associated with boxing. Semin. Neurol. 20, 179–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Mendez, M. F. The neuropsychiatric aspects of boxing. Int. J. Psychiatry Med. 25, 249–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Roberts, G. W., Allsop, D. & Bruton, C. The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry 53, 373–378 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tokuda, T., Ikeda, S., Yanagisawa, N., Ihara, Y. & Glenner, G. G. Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol. 82, 280–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, V. E., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat. Rev. Neurosci. 11, 361–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, V. E., Stewart, W. & Smith, D. H. Widespread tau and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22, 142–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, V. E., Stewart, W., Trojanowski, J. Q. & Smith, D. H. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol. 122, 715–726 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jordan, B. D. Clinical spectrum of sports-related traumatic brain injury. Nat. Rev. Neurol. (in press).

  48. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Tibbling, G., Link, H. & Ohman, S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand. J. Clin. Lab. Invest. 37, 385–390 (1977).

    Article  CAS  PubMed  Google Scholar 

  51. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Blennow, K. et al. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons. Acta Neurol. Scand. 123, 245–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006).

    Article  PubMed  Google Scholar 

  55. Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M. & Morganti-Kossmann, M. C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J. Cereb Blood Flow Metab. 30, 769–782 (2010).

    Article  PubMed  Google Scholar 

  56. Kirchhoff, C. et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res. 13, 464–468 (2008).

    CAS  PubMed  Google Scholar 

  57. Goodman, J. C., Van, M., Gopinath, S. P. & Robertson, C. S. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir. Suppl. 102, 437–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Buttram, S. D. et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J. Neurotrauma 24, 1707–1717 (2007).

    Article  PubMed  Google Scholar 

  59. Phillips, D. J. et al. Activin A release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J. Neurotrauma 23, 1283–1294 (2006).

    Article  PubMed  Google Scholar 

  60. Maier, B. et al. Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 26, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Shiozaki, T. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Singhal, A. et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma 19, 929–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bell, M. J. et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma 14, 451–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Trojanowski, J. Q., Schuck, T., Schmidt, M. L. & Lee, V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37, 209–215 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Friede, R. L. & Samorajski, T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167, 379–387 (1970).

    Article  CAS  PubMed  Google Scholar 

  67. Franz, G. et al. Amyloid β1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457–1461 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zemlan, F. P. et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 947, 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Blennow, K. & Nellgård, B. Amyloid β1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 62, 159–160 (2004).

    Article  PubMed  Google Scholar 

  70. Ost, M. et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67, 1600–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Neselius, S. et al. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7, e33606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, Q. et al. Neurofilament proteins in neurodegenerative diseases. Cell. Mol. Life Sci. 61, 3057–3075 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Siman, R. et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J. Neurotrauma 26, 1867–1877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Olsson, B., Zetterberg, H., Hampel, H. & Blennow, K. Biomarker-based dissection of neurodegenerative diseases. Prog. Neurobiol. 4, 520–534 (2011).

    Article  CAS  Google Scholar 

  75. Scarna, H. et al. Neuron-specific enolase as a marker of neuronal lesions during various comas in man. Neurochem. Int. 4, 405–411 (1982).

    Article  CAS  PubMed  Google Scholar 

  76. Bohmer, A. E. et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 68, 1624–1631 (2011).

    Article  PubMed  Google Scholar 

  77. Chiaretti, A. et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 72, 609–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Varma, S. et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J. Neurotrauma 20, 781–786 (2003).

    Article  PubMed  Google Scholar 

  79. Berger, R. P. et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 109, E31 (2002).

    Article  PubMed  Google Scholar 

  80. Ross, S. A., Cunningham, R. T., Johnston, C. F. & Rowlands, B. J. Neuron-specific enolase as an aid to outcome prediction in head injury. Br. J. Neurosurg. 10, 471–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Berger, R. P. et al. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics 117, 325–332 (2006).

    Article  PubMed  Google Scholar 

  82. Ramont, L. et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin. Chem. Lab. Med. 43, 1215–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Moore, B. W. & McGregor, D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J. Biol. Chem. 240, 1647–1653 (1965).

    CAS  PubMed  Google Scholar 

  84. Isobe, T., Ishioka, N. & Okuyama, T. Structural relation of two S-100 proteins in bovine brain; subunit composition of S.-100A protein. Eur. J. Biochem. 115, 469–474 (1981).

    Article  CAS  PubMed  Google Scholar 

  85. Nylen, K. et al. Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir. (Wien) 150, 221–227 (2008).

    Article  CAS  Google Scholar 

  86. Czeiter, E. et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 29, 1770–1778 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. McKenzie, J. E., Gentleman, S. M., Roberts, G. W., Graham, D. I. & Royston, M. C. Increased numbers of β APP-immunoreactive neurones in the entorhinal cortex after head injury. Neuroreport 6, 161–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Sherriff, F. E., Bridges, L. R. & Sivaloganathan, S. Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein. Acta Neuropathol. 87, 55–62 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Gentleman, S. M. et al. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 89, 537–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Ahlgren, S., Li, G. L. & Olsson, Y. Accumulation of β-amyloid precursor protein and ubiquitin in axons after spinal cord trauma in humans: immunohistochemical observations on autopsy material. Acta Neuropathol. 92, 49–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Gleckman, A. M., Bell, M. D., Evans, R. J. & Smith, T. W. Diffuse axonal injury in infants with nonaccidental craniocerebral trauma: enhanced detection by β-amyloid precursor protein immunohistochemical staining. Arch. Pathol. Lab. Med. 123, 146–151 (1999).

    CAS  PubMed  Google Scholar 

  92. McKenzie, K. J. et al. Is β-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol. 92, 608–613 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, D. H., Chen, X. H., Iwata, A. & Graham, D. I. Amyloid β accumulation in axons after traumatic brain injury in humans. J. Neurosurg. 98, 1072–1077 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Uryu, K. et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol. 208, 185–192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19, 214–223 (2009).

    Article  PubMed  Google Scholar 

  96. Roberts, G. W., Gentleman, S. M., Lynch, A. & Graham, D. I. β A4 amyloid protein deposition in brain after head trauma. Lancet 338, 1422–1423 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Graham, D. I., Gentleman, S. M., Lynch, A. & Roberts, G. W. Distribution of β-amyloid protein in the brain following severe head injury. Neuropathol. Appl. Neurobiol. 21, 27–34 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Horsburgh, K. et al. β-amyloid (Aβ)42(43), Aβ42, Aβ40 and apoE immunostaining of plaques in fatal head injury. Neuropathol. Appl. Neurobiol. 26, 124–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Raby, C. A. et al. Traumatic brain injury increases β-amyloid peptide1–42 in cerebrospinal fluid. J. Neurochem. 71, 2505–2509 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Olsson, A. et al. Marked increase of β-amyloid1–42 and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J. Neurol. 251, 870–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Mortberg, E. et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol. Scand. 55, 1132–1138 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Randall, J. et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation http://dx.doi.org/10.1016/j.resuscitation.2012.07.027.

  103. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mondello, S. et al. Blood-based diagnostics of traumatic brain injuries. Expert Rev. Mol. Diagn. 11, 65–78 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kovesdi, E. et al. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. (Wien) 152, 1–17 (2010).

    Article  Google Scholar 

  106. Mussack, T. et al. Significance of Elecsys S100 immunoassay for real-time assessment of traumatic brain damage in multiple trauma patients. Clin. Chem. Lab. Med. 44, 1140–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Rothoerl, R. D. & Woertgen, C. High serum S100B levels for trauma patients without head injuries. Neurosurgery 49, 1490–1493 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Anderson, R. E., Hansson, L. O., Nilsson, O., Dijlai-Merzoug, R. & Settergren, G. High serum S100B levels for trauma patients without head injuries. Neurosurgery 48, 1255–1260 (2001).

    CAS  PubMed  Google Scholar 

  109. Romner, B. & Ingebrigtsen, T. High serum S100B levels for trauma patients without head injuries. Neurosurgery 49, 1490–1493 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Stalnacke, B. M., Ohlsson, A., Tegner, Y. & Sojka, P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br. J. Sports Med. 40, 313–316 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Blyth, B. J. et al. Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood–brain barrier function after traumatic brain injury. J. Neurotrauma 28, 2453–2462 (2011).

    Article  PubMed  Google Scholar 

  112. Metting, Z., Wilczak, N., Rodiger, L. A., Schaaf, J. M. & van der Naalt, J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 78, 1428–1433 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Berger, R. P. et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg. 103, 161–68 (2005).

    Google Scholar 

  114. Zurek, J. & Fedora, M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir. (Wien) 154, 193–103 (2012).

    Article  Google Scholar 

  115. Zurek, J., Bartlova, L. & Fedora, M. Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj. 25, 221–226 (2011).

    Article  PubMed  Google Scholar 

  116. Tisdall, M. & Petzold, A. Comment on “chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model”. Sci. Transl. Med. 4, 157le158 (2012).

    Article  Google Scholar 

  117. Riederer, B. M., Zagon, I. S. & Goodman, S. R. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J. Cell Biol. 102, 2088–2097 (1986).

    Article  CAS  PubMed  Google Scholar 

  118. Pike, B. R. et al. Accumulation of non-erythroid α II-spectrin and calpain-cleaved α II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem. 78, 1297–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Pineda, J. A. et al. Clinical significance of αII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J. Neurotrauma 24, 354–366 (2007).

    Article  PubMed  Google Scholar 

  120. Farkas, O. et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury—preliminary observations. Acta Neurochir. (Wien) 147, 855–861 (2005).

    Article  CAS  Google Scholar 

  121. Mondello, S. et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma 27, 1203–1213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wilkinson, K. D. et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Papa, L. et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J. Trauma Acute Care Surg. 72, 1335–1344 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ottens, A. K. et al. Neuroproteomics in neurotrauma. Mass Spectrom. Rev. 25, 380–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Pasinetti, G. M., Ho, L., Dooley, C., Abbi, B. & Lange, G. Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF veterans. Am. J. Neurodegener. Dis. 1, 88–98 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med. 3, 270–303 (1973).

    Article  CAS  PubMed  Google Scholar 

  127. Pollock, N. J., Mirra, S. S., Binder, L. I., Hansen, L. A. & Wood, J. G. Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau. Lancet 2, 1211 (1986).

    Article  CAS  PubMed  Google Scholar 

  128. Hampel, H. et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry 61, 95–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol., 27, 1–8 (2012).

    Google Scholar 

  130. Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci. 45, 384–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. King, A. et al. Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer's disease. Neuropathology 30, 408–419 (2010).

    Article  PubMed  Google Scholar 

  132. McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69, 918–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Geser, F. et al. On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog. Neurobiol. 95, 649–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Guerrero, A. F. & Alfonso, A. Traumatic brain injury-related hypopituitarism: a review and recommendations for screening combat veterans. Mil. Med. 175, 574–580 (2010).

    Article  PubMed  Google Scholar 

  136. Kelestimur, F. et al. Boxing as a sport activity associated with isolated GH deficiency. J. Endocrinol. Invest. 27, RC28–RC32 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Tanriverdi, F. et al. Brief communication: pituitary volume and function in competing and retired male boxers. Ann. Intern. Med. 148, 827–831 (2008).

    Article  PubMed  Google Scholar 

  138. Tanriverdi, F. et al. Kickboxing sport as a new cause of traumatic brain injury-mediated hypopituitarism. Clin. Endocrinol. (Oxf.) 66, 360–366 (2007).

    Article  Google Scholar 

  139. Wilkinson, C. W. et al. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front. Neurol. 3, 11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by the Swedish Research Council and Swedish State Support for Clinical Research (H. Zetterberg, K. Blennow), the Wolfson Foundation (H. Zetterberg) and NIH grants R01 NS038104, P01 NS056202 and R03 AG038911 (D. H. Smith).

Author information

Authors and Affiliations

Authors

Contributions

H. Zetterberg wrote the article. H. Zetterberg, D. H. Smith and K. Blennow contributed equally to researching data for the article, discussion of the content, and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Henrik Zetterberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zetterberg, H., Smith, D. & Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9, 201–210 (2013). https://doi.org/10.1038/nrneurol.2013.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research