Skip to main content
Log in

Newer Neuromuscular Blocking Agents

How do They Compare with Established Agents?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Rapacuronium bromide (rapacuronium; ORG-9487) is a nondepolarising muscle relaxant (NMBA) with a low potency [90% effective dose (ED90) 1 mg/kg], which to some extent is responsible for its rapid onset of action. Because of the high plasma clearance (5.3 to 11.1 mg/kg/min) of rapacuronium, its clinical duration of action following single bolus doses up to 2 mg/kg in adults is short (i.e. <20 minutes). Rapacuronium forms a pharmacologically active 3-desacetyl metabolite, ORG-9488, which may contribute to a delay in spontaneous recovery after repeat bolus doses or infusions. After rapacuronium 1.5 mg/kg clinically acceptable intubating conditions are achieved within 60 to 90 seconds in the majority of adult and elderly patients undergoing elective anaesthesia. However, in a rapid-sequence setting, intubating conditions are less favourable after rapacuronium 1.5 to 2.5 mg/kg than after succinylcholine. The most prominent adverse effects of rapacuronium (tachycardia, hypotension and bronchospasm) are dose-related, and in particular pulmonary adverse effects are observed more frequently under conditions of a rapid-sequence induction in adults. Therefore, it seems worthwhile to consider only doses of rapacuronium ≤1.5 mg/kg to facilitate rapid tracheal intubation, and to use succinylcholine or rocuronium rather than rapacuronium in a rapid-sequence setting. Rapacuronium, however, is a suitable alternative to mivacurium chloride (mivacurium) and succinylcholine for short procedures (e.g. ambulatory anaesthesia).

Rocuronium bromide (rocuronium) is a relatively low-potent, intermediate-acting NMBA. Its main advantage is the rapid onset of neuromuscular block whereby good or excellent intubating conditions are achieved within 60 to 90 seconds after rocuronium 0.6 mg/kg (2 × ED95), and within 60 to 180 seconds after smaller doses (1 to 1.5 × ED95). Larger doses of rocuronium (≥1 mg/kg) seem to be suitable for rapid-sequence induction under relatively light anaesthesia. However, it is still a matter of controversy whether, in the case of an unanticipated difficult intubation, the long duration of rocuronium administered in such large doses outweighs the many adverse effects of succinylcholine. Rocuronium has mild vagolytic effects and does not release histamine, even when administered in large doses. Rocuronium is primarily eliminated via the liver and its pharmacokinetic profile is similar to that of vecuronium bromide (vecuronium). Unlike vecuronium, rocuronium has no metabolite.

Cisatracurium besilate (cisatracurium), the 1R -cis, 1 ‘R -cis isomer of atracurium besilate (atracurium) is approximately 4 times more potent than atracurium. The onset time of cisatracurium is significantly slower than after equipotent doses of atracurium. The recommended intubating dose is 0.15 to 0.2 mg/kg (3 to 4 times ED95). Over a wide range of clinically relevant doses the recovery properties of cisatracurium are affected by neither the size of the bolus dose nor by the duration of infusion. Unlike atracurium, cisatracurium does not trigger histamine release. Like atracurium, cisatracurium undergoes Hofmann elimination. In contrast to atracurium, cisatracurium does not undergo hydrolysis by nonspecific plasma esterases. Moreover, about 77% of the drug is cleared by organ-dependent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Table III

Similar content being viewed by others

References

  1. Viby-Mogensen J, Jorgensen BC, Ording H. Residual curarization in the recovery room. Anesthesiology 1979 Jun; 50: 539–41

    PubMed  CAS  Google Scholar 

  2. Bevan DR, Smith CE, Donati F. Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology 1988 Aug; 69: 272–6

    PubMed  CAS  Google Scholar 

  3. Ali HH, Savarese JJ, Lebowitz PW, et al. Twitch, tetanus and train-of-four as indices of recovery from nondepolarizing neuromuscular blockade. Anesthesiology 1981 Apr; 54: 294–7

    PubMed  CAS  Google Scholar 

  4. Eriksson LI, Sundman E, Olsson R, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997 Nov; 87: 1035–43

    PubMed  CAS  Google Scholar 

  5. Sundman E, Witt H, Olsson R, et al. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000 Apr; 92: 977–84

    PubMed  CAS  Google Scholar 

  6. Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997 Oct; 41: 1095–103

    PubMed  CAS  Google Scholar 

  7. Ballantyne JC, Chang Y. The impact of choice of muscle relaxant on postoperative recovery time: a retrospective study. Anesth Analg 1997 Sep; 85: 476–82

    PubMed  CAS  Google Scholar 

  8. Caldwell JE. The problem with long-acting muscle relaxants? They cost more! Anesth Analg 1997 Sep; 85: 473–5

    CAS  Google Scholar 

  9. Bedford RF. From the FDA (Guidelines of the FDA for the definition of adjectives describing nondepolarizing neuromuscular agents). Anesthesiology 1995 Jan; 82: 33A

    PubMed  CAS  Google Scholar 

  10. Organon Inc. Raplon (rapacuronium bromide) for injection. Product information approved by the FDA. West Orange (NJ): Organon Inc. 07052, 1999 Aug

  11. Cooper R, Mirakhur RK, Clarke RS, et al. Comparison of intubating conditions after administration of Org 9246 (rocuronium) and suxamethonium. Br J Anaesth 1992 Sep; 69: 269–73

    PubMed  CAS  Google Scholar 

  12. Debaene B, Lieutaud T, Billard V, et al. ORG 9487 neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Anesthesiology 1997 Jun; 86: 1300–5

    PubMed  CAS  Google Scholar 

  13. Miguel R, Witkowski T, Nagashima H, et al. Evaluation of neuromuscular and cardiovascular effects of two doses of rapacuronium (ORG 9487) versus mivacurium and succinylcholine. Anesthesiology 1999 Dec; 91: 1648–54

    PubMed  CAS  Google Scholar 

  14. Szenohradszky J, Caldwell JE, Wright PM, et al. Influence of renal failure on the pharmacokinetics and neuromuscular effects of a single dose of rapacuronium bromide. Anesthesiology 1999 Jan; 90: 24–35

    PubMed  CAS  Google Scholar 

  15. Wierda JM, van den Broek L, Proost JH, et al. Time course of action and endotracheal intubating conditions of Org 9487, a new short-acting steroidal muscle relaxant; a comparison with succinylcholine. Anesth Analg 1993 Sep; 77: 579–84

    PubMed  CAS  Google Scholar 

  16. Bartkowski R, Witkowski T, Epstein RH. Recovery from rapacuronium: early vs. late reversal. Anesth Analg 2000; 90: S389

    Google Scholar 

  17. Deepika K, Kenaan CA, Bikhazi GB, et al. Comparative study of recovery parameters of rapacuronium bromide after early and late reversal. Anesth Analg 2000; 90: S399

    Google Scholar 

  18. Hayes A, Breslin D, Reid J, et al. Comparison of recovery following rapacuronium, with and without neostigmine, and succinylcholine. Anaesthesia 2000 Sep; 55: 859–63

    PubMed  CAS  Google Scholar 

  19. Purdy R, Bevan DR, Donati F, et al. Early reversal of rapacuronium with neostigmine. Anesthesiology 1999 Jul; 91: 51–7

    PubMed  CAS  Google Scholar 

  20. Bevan DR. Recovery from neuromuscular block and its assessment. Anesth Analg 2000 May; 90: S7–S13

    PubMed  CAS  Google Scholar 

  21. Zhou TJ, White PF, Chiu JW, et al. Onset/offset characteristics and intubating conditions of rapacuronium: a comparison with rocuronium. Br J Anaesth 2000 Aug; 85: 246–50

    PubMed  CAS  Google Scholar 

  22. Wierda JM, Beaufort AM, Kleef UW, et al. Preliminary investigations of the clinical pharmacology of three short-acting non-depolarizing neuromuscular blocking agents, Org 9453, Org 9489 and Org 9487. Can J Anaesth 1994 Mar; 41: 213–20

    PubMed  CAS  Google Scholar 

  23. Schiere S, van den Broek L, Proost JH, et al. Comparison of vecuronium with ORG 9487 and their interaction. Can J Anaesth 1997 Nov; 44: 1138–43

    PubMed  CAS  Google Scholar 

  24. Kopman AF, Klewicka MM, Ghori K, et al. Dose-response and onset/offset characteristics of rapacuronium. Anesthiology 2000 Oct; 93: 1017–21

    CAS  Google Scholar 

  25. Xue FS, Tong SY, Liao X, et al. Dose-response and time course of effect of rocuronium in male and female anaesthetized partients. Anesth Analag 1997 Sep; 85: 667–71

    CAS  Google Scholar 

  26. Kaplan RF, Fletcher JE, Hannallah RS, et al. The potency (ED50) and cardiovascular effects of rapacuronium (Org 9487) during narcotic-nitrous oxide-propofol anesthesia in neonates, infants, and children. Anesth Analg 1999 Nov; 89: 1172–6

    PubMed  CAS  Google Scholar 

  27. Wright PM, Brown R, Lau M, et al. A pharmacodynamic explanation for the rapid onset/offset of rapacuronium bromide. Anesthesiology 1999 Jan; 90: 16–23

    PubMed  CAS  Google Scholar 

  28. Zhou TJ, Tang J, White PF, et al. Reversal of rapacuronium block during propofol versus sevoflurane anesthesia. Anesth Analg 2000 Mar; 90: 689–93

    PubMed  CAS  Google Scholar 

  29. Kahwaji R, Bevan DR, Bikhazi G, et al. Dose-ranging study in younger adult and elderly patients of ORG 9487, a new, rapid-onset, short-duration muscle relaxant. Anesth Analg 1997 May; 84: 1011–8

    PubMed  CAS  Google Scholar 

  30. Duvaldestin P, Slavov V, Rebufat Y. Pharmacokinetics and pharmacodynamics of rapacuronium in patients with cirrhosis. Anesthesiology 1999 Nov; 91: 1305–10

    PubMed  CAS  Google Scholar 

  31. Witkowski T, Bartkowski R, Huffnagle S. Onset and recovery of rapacuronium. A comparison with rocuronium. Anesthesiology 1998; 89: A978

    Google Scholar 

  32. van den Broek L, Wierda JM, Smeulers NJ, et al. Pharmacodynamics and pharmacokinetics of an infusion of Org 9487, a new short-acting steroidal neuromuscular blocking agent. Br J Anaesth 1994 Sep; 73: 331–5

    PubMed  Google Scholar 

  33. Schiere S, Proost JH, Schuringa M, et al. Pharmacokinetics and pharmacokinetic-dynamic relationship between rapacuronium (Org 9487) and its 3-desacetyl metabolite (Org 9488). Anesth Analg 1999 Mar; 88: 640–7

    PubMed  CAS  Google Scholar 

  34. Meakin GH, Meretoja OA, Motsch J, et al. A dose-ranging study of rapacuronium in pediatric patients. Anesthesiology 2000 Apr; 92: 1002–9

    PubMed  CAS  Google Scholar 

  35. Muir AW, Sleigh T, Marshall RJ, et al. Neuromuscular blocking and cardiovascular effects of Org 9487, a new short-acting aminosteroidal blocking agent, in anaesthetized animals and in isolated muscle preparations. Eur J Anaesthesiol 1998 Jul; 15: 467–79

    PubMed  CAS  Google Scholar 

  36. Sharpe MD, Lam AM, Nicholas JF, et al. Correlation between integrated evoked EMG and respiratory function following atracurium administration in unanaesthetized humans. Can J Anaesth 1990 Apr; 37: 307–12

    PubMed  CAS  Google Scholar 

  37. van den Broek L, Proost JH, Wierda JM. Early and late reversibility of rocuronium bromide. Eur J Anaesthesiol Suppl. 1994; 9: 128–32

    PubMed  Google Scholar 

  38. Bevan JC, Collins L, Fowler C, et al. Early and late reversal of rocuronium and vecuronium with neostigmine in adults and children. Anesth Analg 1999 Aug; 89: 333–9

    PubMed  CAS  Google Scholar 

  39. Mills KG, Wright PM, Pollard BJ, et al. Antagonism of rapacuronium using edrophonium or neostigmine: pharmacodynamics and pharmacokinetics. Br J Anaesth 1999 Nov; 83: 727–33

    PubMed  CAS  Google Scholar 

  40. McCourt KC, Mirakhur RK, Lowry DW, et al. Spontaneous or neostigmine-induced recovery after maintenance of neuromuscular block with Org 9487 (rapacuronium) or rocuronium following an initial dose of Org 9487. Br J Anaesth 1999 May; 82: 755–6

    PubMed  CAS  Google Scholar 

  41. Viby-Mogensen J, Engbaek J, Eriksson LI, et al. Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesthesiol Scand 1996 Jan; 40: 59–74

    PubMed  CAS  Google Scholar 

  42. Abouleish EI, Abboud TS, Bikhazi G, et al. Rapacuronium for modified rapid sequence induction in elective Caesarean section: neuromuscular blocking effects and safety compared with succinylcholine, and placental transfer. Br J Anaesth 1999 Dec; 83: 862–7

    PubMed  CAS  Google Scholar 

  43. Blobner M, Mirakhur RK, Wierda JMKH, et al. Rapacuronium 2.0 and 2.5 mg/kg for rapid sequence induction: a comparison with succinylcholine 1 mg/kg. Br J Anaesth 2000 Nov; 85: 724–31

    PubMed  CAS  Google Scholar 

  44. Fleming NW, Chung F, Glass PS, et al. Comparison of the intubation conditions provided by rapacuronium (ORG 9487) or succinylcholine in humans during anesthesia with fentanyl and propofol. Anesthesiology 1999 Nov; 91: 1311–7

    PubMed  CAS  Google Scholar 

  45. Sparr HJ, Mellinghoff H, Blobner M, et al. Comparison of intubating conditions after rapacuronium (Org 9487) and succinylcholine following rapid sequence induction in adult patients. Br J Anaesth 1999 Apr; 82: 537–41

    PubMed  CAS  Google Scholar 

  46. van den Broek L. Development of muscle relaxants: potency and safety. The Netherlands: University of Groningen Press, 1996: 92

    Google Scholar 

  47. Fiddes S, Prior C. In-vitro smooth muscle relaxant activity of a series of vecuronium analogues in the rat aorta. J Pharm Pharmacol 1994 Nov; 46: 911–6

    PubMed  CAS  Google Scholar 

  48. Sato K, Windisch K, Matko I, et al. Effects of non-depolarizing neuromuscular blocking agents on norepinephrine release from human atrial tissue obtained during cardiac surgery. Br J Anaesth 1999 Jun; 82: 904–9

    PubMed  CAS  Google Scholar 

  49. Levy JH, Pitts M, Thanopoulos A, et al. The effects of rapacuronium on histamine release and hemodynamics in adult patients undergoing general anesthesia. Anesth Analg 1999 Aug; 89: 290–5

    PubMed  CAS  Google Scholar 

  50. Osmer C, Wulf K, Vogele C, et al. Cardiovascular effects of Org 9487 under isoflurane anaesthesia in man. Eur J Anaesthesiol 1998 Sep; 15: 585–9

    PubMed  CAS  Google Scholar 

  51. McCourt KC, Elliott P, Mirakhur RK, et al. Haemodynamic effects of rapacuronium in adults with coronary artery or valvular disease. Br J Anaesth 1999 Nov; 83: 721–6

    PubMed  CAS  Google Scholar 

  52. Hou VY, Hirshman CA, Emala CW. Neuromuscular relaxants as antagonists for M2 and M3 muscarinic receptors. Anesthesiology 1998 Mar; 88: 744–50

    PubMed  CAS  Google Scholar 

  53. Kim ES, Bishop MJ. Endotracheal intubation, but not laryngeal mask airway insertion, produces reversible bronchocon-striction. Anesthesiology 1999 Feb; 90: 391–4

    PubMed  CAS  Google Scholar 

  54. Fisher DM, Kahwaji R, Bevan D, et al. Factors affecting the pharmacokinetic characteristics of rapacuronium. Anesthesiology 1999 Apr; 90: 993–1000

    PubMed  CAS  Google Scholar 

  55. Wierda JM, Kleef UW, Lambalk LM, et al. The pharmacodynamics and pharmacokinetics of Org 9426, a new non-depolarizing neuromuscular blocking agent, in patients anaesthetized with nitrous oxide, halothane and fentanyl. Can J Anaesth 1991 May; 38: 430–5

    PubMed  CAS  Google Scholar 

  56. Bencini AF, Scaf AH, Sohn YJ, et al. Hepatobiliary disposition of vecuronium bromide in man. Br J Anaesth 1986 Sep; 58: 988–95

    PubMed  CAS  Google Scholar 

  57. Cook DR, Freeman JA, Lai AA, et al. Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 1992 Dec; 69: 580–5

    PubMed  CAS  Google Scholar 

  58. Kisor DF, Schmith VD, Wargin WA, et al. Importance of the organ-independent elimination of cisatracurium. Anesth Analg 1996 Nov; 83: 1065–71

    PubMed  CAS  Google Scholar 

  59. Fisher DM, Szenohradszky J, Wright PM, et al. Pharmacodynamic modeling of vecuronium-induced twitch depression. Rapid plasma-effect site equilibration explains faster onset at resistant laryngeal muscles than at the adductor pollicis. Anesthesiology 1997 Mar; 86: 558–66

    PubMed  CAS  Google Scholar 

  60. Plaud B, Proost JH, Wierda JM, et al. Pharmacokinetics and pharmacodynamics of rocuronium at the vocal cords and the adductor pollicis in humans. Clin Pharmacol Ther 1995 Aug; 58: 185–91

    PubMed  CAS  Google Scholar 

  61. Onrust SV, Foster RH. Rapacuronium bromide: a review of its use in anaesthetic practice. Drugs 1999 Nov; 58: 887–918

    PubMed  CAS  Google Scholar 

  62. Foldes FF, Nagashima H, Nguyen HD, et al. The neuromuscular effects of ORG9426 in patients receiving balanced anesthesia. Anesthesiology 1991 Aug; 75: 191–6

    PubMed  CAS  Google Scholar 

  63. Cooper RA, Mirakhur RK, Elliott P, et al. Estimation of the potency of ORG 9426 using two different modes of nerve stimulation. Can J Anaesth 1992 Feb; 39: 139–42

    PubMed  CAS  Google Scholar 

  64. Booth MG, Marsh B, Bryden FM, et al. A comparison of the pharmacodynamics of rocuronium and vecuronium during halothane anaesthesia. Anaesthesia 1992 Oct; 47: 832–4

    PubMed  CAS  Google Scholar 

  65. Mellinghoff H, Diefenbach C, Bischoff A, et al. Dose-response relationship of rocuronium bromide during intravenous anaesthesia. Eur J Anaesthesiol Suppl. 1994; 9: 20–4

    PubMed  CAS  Google Scholar 

  66. Woolf RL, Crawford MW, Choo SM. Dose-response of rocuronium bromide in children anesthetized with propofol: a comparison with succinylcholine. Anesthesiology 1997 Dec; 87: 1368–72

    PubMed  CAS  Google Scholar 

  67. Wierda JM, Meretoja OA, Taivainen T, et al. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children. Br J Anaesth 1997 Jun; 78: 690–5

    PubMed  CAS  Google Scholar 

  68. Puhringer FK, Khuenl-Brady KS, Koller J, et al. Evaluation of the endotracheal intubating conditions of rocuronium (ORG 9426) and succinylcholine in outpatient surgery. Anesth Analg 1992 Jul; 75: 37–40

    PubMed  CAS  Google Scholar 

  69. Cooper RA, Mirakhur RK, Maddineni VR. Neuromuscular effects of rocuronium bromide (Org 9426) during fentanyl and halothane anaesthesia. Anaesthesia 1993 Feb; 48: 103–5

    PubMed  CAS  Google Scholar 

  70. Bartkowski RR, Witkowski TA, Azad S, et al. Rocuronium onset of action: a comparison with atracurium and vecuronium. Anesth Analg 1993 Sep; 77: 574–8

    PubMed  CAS  Google Scholar 

  71. Wright PM, Caldwell JE, Miller RD. Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal adductor muscles in anesthetized humans. Anesthesiology 1994 Nov; 81: 1110–5

    PubMed  CAS  Google Scholar 

  72. Meistelman C, Plaud B, Donati F. Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can J Anaesth 1992 Sep; 39: 665–9

    PubMed  CAS  Google Scholar 

  73. Dhonneur G, Kirov K, Slavov V, et al. Effects of an intubating dose of succinylcholine and rocuronium on the larynx and diaphragm: an electromyographic study in humans. Anesthesiology 1999 Apr; 90: 951–5

    PubMed  CAS  Google Scholar 

  74. Rorvik K, Husby P, Gramstad L, et al. Comparison of large dose of vecuronium with pancuronium for prolonged neuromuscular blockade. Br J Anaesth 1988 Aug; 61: 180–5

    PubMed  CAS  Google Scholar 

  75. Tullock WC, Diana P, Cook DR, et al. Neuromuscular and cardiovascular effects of high-dose vecuronium. Anesth Analg 1990 Jan; 70: 86–90

    PubMed  CAS  Google Scholar 

  76. Huizinga AC, Vandenbrom RH, Wierda JM, et al. Intubating conditions and onset of neuromuscular block of rocuronium (Org 9426); a comparison with suxamethonium. Acta Anaesthesiol Scand 1992 Jul; 36: 463–8

    PubMed  CAS  Google Scholar 

  77. Mayer M, Doenicke A, Hofmann A, et al. Onset and recovery of rocuronium (Org 9426) and vecuronium under enflurane anaesthesia. Br J Anaesth 1992 Nov; 69: 511–2

    PubMed  CAS  Google Scholar 

  78. Naguib M. Neuromuscular effects of rocuronium bromide and mivacurium chloride administered alone and in combination. Anesthesiology 1994 Aug; 81: 388–95

    PubMed  CAS  Google Scholar 

  79. Wierda JM, Hommes FD, Nap HJ, et al. Time course of action and intubating conditions following vecuronium, rocuronium and mivacurium. Anaesthesia 1995 May; 50: 393–6

    PubMed  CAS  Google Scholar 

  80. van den Broek L, Hommes FD, Nap HJ, et al. Rocuronium- and mivacurium-induced neuromuscular block and intubating conditions: a comparison with vecuronium. Eur J Anaesthesiol Suppl. 1995 Sep; 11: 27–30

    PubMed  Google Scholar 

  81. Kansanaho M, Olkkola KT, Wierda JM. Dose-response and concentration-response relation of rocuronium infusion during propofol-nitrous oxide and isoflurane-nitrous oxide anaesthesia. Eur J Anaesthesiol 1997 Sep; 14: 488–94

    PubMed  CAS  Google Scholar 

  82. McCoy EP, Mirakhur RK, Maddineni VR, et al. Administration of rocuronium (Org 9426) by continuous infusion and its reversibility with anticholinesterases. Anaesthesia 1994 Nov; 49: 940–5

    PubMed  CAS  Google Scholar 

  83. Shanks CA, Fragen RJ, Ling D. Continuous intravenous infusion of rocuronium (ORG 9426) in patients receiving balanced, enflurane, or isoflurane anesthesia. Anesthesiology 1993 Apr; 78: 649–51

    PubMed  CAS  Google Scholar 

  84. Sparr HJ, Khuenl-Brady KS, Eriksson LI. Pharmacodynamics and pharmacokinetics of rocuronium following continuous infusion in patients during intravenous anaesthesia. Eur J Anaesthesiol Suppl. 1994; 9: 63–5

    PubMed  CAS  Google Scholar 

  85. Bevan DR, Fiset P, Balendran P, et al. Pharmacodynamic behaviour of rocuronium in the elderly. Can J Anaesth 1993 Feb; 40: 127–32

    PubMed  CAS  Google Scholar 

  86. Cooper RA, Maddineni VR, Mirakhur RK, et al. Time course of neuromuscular effects and pharmacokinetics of rocuronium bromide (Org 9426) during isoflurane anaesthesia in patients with and without renal failure. Br J Anaesth 1993 Aug; 71: 222–6

    PubMed  CAS  Google Scholar 

  87. Servin FS, Lavaut E, Kleef U, et al. Repeated doses of rocuronium bromide administered to cirrhotic and control patients receiving isoflurane. A clinical and pharmacokinetic study. Anesthesiology 1996 May; 84: 1092–100

    PubMed  CAS  Google Scholar 

  88. van Miert MM, Eastwood NB, Boyd AH, et al. The pharmacokinetics and pharmacodynamics of rocuronium in patients with hepatic cirrhosis. Br J Clin Pharmacol 1997 Aug; 44: 139–44

    PubMed  Google Scholar 

  89. McCourt KC, Mirakhur RK, Kerr CM. Dosage of neostigmine for reversal of rocuronium block from two levels of spontaneous recovery. Anaesthesia 1999 Jul; 54: 651–5

    PubMed  CAS  Google Scholar 

  90. Khuenl-Brady KS, Puhringer F, Koller J, et al. Evaluation of the time course of action of maintenance doses of rocuronium (ORG 9426) under halothane anaesthesia. Acta Anaesthesiol Scand 1993 Feb; 37: 137–9

    PubMed  CAS  Google Scholar 

  91. Fahey MR, Morris RB, Miller RD, et al. Clinical pharmacology of Org NC 45 (Norcuron): a new nondepolarizing muscle relaxant. Anesthesiology 1981; 55: 6–11

    PubMed  CAS  Google Scholar 

  92. Sparr HJ, Wierda JM, Proost JH, et al. Pharmacodynamics and pharmacokinetics of rocuronium in intensive care patients. Br J Anaesth 1997 Mar; 78: 267–73

    PubMed  CAS  Google Scholar 

  93. De Mey JC, Debrock M, Roily G. Evaluation of the onset and intubation conditions of rocuronium bromide. Eur J Anaesthesiol Suppl. 1994; 9: 37–40

    PubMed  Google Scholar 

  94. Magorian T, Flannery KB, Miller RD. Comparison of rocuronium, succinylcholine, and vecuronium for rapid-sequence induction of anesthesia in adult patients. Anesthesiology 1993 Nov; 79: 913–8

    PubMed  CAS  Google Scholar 

  95. Sparr HJ, Giesinger S, Ulmer H, et al. Influence of induction technique on intubating conditions after rocuronium in adults: comparison with rapid-sequence induction using thiopentone and suxamethonium. Br J Anaesth 1996 Sep; 77: 339–42

    PubMed  CAS  Google Scholar 

  96. Tryba M, Zorn A, Thole H, et al. Rapid-sequence orotracheal intubation with rocuronium: a randomized double-blind comparison with suxamethonium — preliminary communication. Eur J Anaesthesiol Suppl. 1994; 9: 44–8

    PubMed  CAS  Google Scholar 

  97. Wierda JM, De Wit AP, Kuizenga K, et al. Clinical observations on the neuromuscular blocking action of Org 9426, a new steroidal non-depolarizing agent. Br J Anaesth 1990 Apr; 64: 521–3

    PubMed  CAS  Google Scholar 

  98. Fuchs-Buder T, Tassonyi E. Intubating conditions and time course of rocuronium-induced neuromuscular block in children. Br J Anaesth 1996 Sep; 77: 335–8

    PubMed  CAS  Google Scholar 

  99. Hopkinson JM, Meakin G, McCluskey A, et al. Dose-response relationship and effective time to satisfactory intubation conditions after rocuronium in children. Anaesthesia 1997 May; 52: 428–32

    PubMed  CAS  Google Scholar 

  100. Scheiber G, Ribeiro FC, Marichal A, et al. Intubating conditions and onset of action after rocuronium, vecuronium, and atracurium in young children. Anesth Analg 1996 Aug; 83: 320–4

    PubMed  CAS  Google Scholar 

  101. Barclay K, Eggers K, Asai T. Low-dose rocuronium improves conditions for tracheal intubation after induction of anaesthesia with propofol and alfentanil. Br J Anaesth 1997 Jan; 78: 92–4

    PubMed  CAS  Google Scholar 

  102. Fuchs-Buder T, Schlaich N, Ziegenfuss T. Low dose rocuronium: time course of neuromuscular block and intubating conditions. Anaesthesist 1999 Mar; 48: 164–8

    PubMed  CAS  Google Scholar 

  103. Prien T, Zahn P, Menges M, et al. 1 × ED90 dose of rocuronium bromide: tracheal intubation conditions and time-course of action. Eur J Anaesthesiol Suppl. 1995 Sep; 11: 85–90

    PubMed  CAS  Google Scholar 

  104. Schlaich N, Fuchs-Buder T, Soltesz S, et al. Remifentanil and propofol without muscle relaxants or with different doses of rocuronium for tracheal intubation in outpatient anaesthesia. Acta Anaesthesiol Scand 2000; 44: 720–6

    PubMed  CAS  Google Scholar 

  105. Sparr HJ, Luger TJ, Heidegger T, et al. Comparison of intubating conditions after rocuronium and suxamethonium following ‘rapid-sequence induction’ with thiopentone in elective cases. Acta Anaesthesiol Scand 1996 Apr; 40: 425–30

    PubMed  CAS  Google Scholar 

  106. Baraka AS, Sayyid SS, Assaf BA. Thiopental-rocuronium versus ketamine-rocuronium for rapid-sequence intubation in parturients undergoing cesarean section. Anesth Analg 1997 May; 84: 1104–7

    PubMed  CAS  Google Scholar 

  107. Dobson AP, McCluskey A, Meakin G, et al. Effective time to satisfactory intubation conditions after administration of rocuronium in adults. Comparison of propofol and thiopentone for rapid sequence induction of anaesthesia. Anaesthesia 1999 Feb; 54: 172–6

    PubMed  CAS  Google Scholar 

  108. Hans P, Brichant JF, Hubert B, et al. Influence of induction of anaesthesia on intubating conditions one minute after rocuronium administration: comparison of ketamine and thiopentone. Anaesthesia 1999 Mar; 54: 276–9

    PubMed  CAS  Google Scholar 

  109. Skinner HJ, Biswas A, Mahajan RP. Evaluation of intubating conditions with rocuronium and either propofol or etomidate for rapid sequence induction. Anaesthesia 1998 Jul; 53: 702–6

    PubMed  CAS  Google Scholar 

  110. Thwaites AJ, Rice CP, Smith I. Rapid sequence induction: a questionnaire survey of its routine conduct and continued management during a failed intubation. Anaesthesia 1999; 54: 376–81

    PubMed  CAS  Google Scholar 

  111. McCourt KC, Salmela L, Mirakhur RK, et al. Comparison of rocuronium and suxamethonium for use during rapid sequence induction of anaesthesia. Anaesthesia 1998 Sep; 53: 867–71

    PubMed  CAS  Google Scholar 

  112. Andrews JI, Kumar N, van den Brom RH, et al. A large simple randomized trial of rocuronium versus succinylcholine in rapid-sequence induction of anaesthesia along with propofol. Acta Anaesthesiol Scand 1999 Jan; 43: 4–8

    PubMed  CAS  Google Scholar 

  113. Chiu CL, Jaais F, Wang CY. Effect of rocuronium compared with succinylcholine on intraocular pressure during rapid sequence induction of anaesthesia. Br J Anaesth 1999 May; 82: 757–60

    PubMed  CAS  Google Scholar 

  114. Engbaek J, Viby-Mogensen J. Can rocuronium replace succinylcholine in a rapid-sequence induction of anaesthesia? Acta Anaesthesiol Scand 1999 Jan; 43: 1–3

    PubMed  CAS  Google Scholar 

  115. Heier T, Caldwell JE. Rapid tracheal intubation with large-dose rocuronium: a probability-based approach. Anesth Analg 2000 Jan; 90: 175–9

    PubMed  CAS  Google Scholar 

  116. Kirkegaard-Nielsen H, Caldwell JE, Berry PD. Rapid tracheal intubation with rocuronium: a probability approach to determining dose. Anesthesiology 1999 Jul; 91: 131–6

    PubMed  CAS  Google Scholar 

  117. Lowry DW, Carroll MT, Mirakhur RK, et al. Comparison of sevoflurane and propofol with rocuronium for modified rapid-sequence induction of anaesthesia. Anaesthesia 1999 Mar; 54: 247–52

    PubMed  CAS  Google Scholar 

  118. Mazurek AJ, Rae B, Hann S, et al. Rocuronium versus succinylcholine: are they equally effective during rapid-sequence induction of anesthesia? Anesth Analg 1998 Dec; 87: 1259–62

    PubMed  CAS  Google Scholar 

  119. Abouleish E, Abboud T, Lechevalier T, et al. Rocuronium (Org 9426) for caesarean section. Br J Anaesth 1994 Sep; 73: 336–41

    PubMed  CAS  Google Scholar 

  120. Hanowell LH, Doms AR, Goyette H, et al. Rocuronium, without a priming dose, is effective for rapid sequence intubation in trauma victims. Anesth Analg 1997; 84: S492

    Google Scholar 

  121. Sakles JC, Laurin EG, Rantapaa AA, et al. Rocuronium for rapid sequence intubation of emergency department patients. J Emerg Med 1999 Jul; 17: 611–6

    PubMed  CAS  Google Scholar 

  122. Cademy AJ. Rapid sequence induction. Anaesthesia 1999; 54: 817

    PubMed  Google Scholar 

  123. Cademy J. The use of rocuronium for rapid sequence induction should be discouraged. Acta Anaesthesiol Scand 2000; 44: 494

    Google Scholar 

  124. Engbaek J. Succinylcholine or rocuronium for rapid sequence induction. Acta Anaesthesiol Scand 2000; 44: 494–5

    Google Scholar 

  125. Levy DM. Rapid sequence induction: suxamethonium or rocuronium? Anaesthesia 2000 Jan; 55: 86

    PubMed  CAS  Google Scholar 

  126. Benumof JL, Dagg R, Benumof R. Critical hemoglobin desaturation will occur before return to an unparalyzed state following 1 mg/kg intravenous succinylcholine. Anesthesiology 1997 Oct; 87: 979–82

    PubMed  CAS  Google Scholar 

  127. Marshall RJ, Muir AW. Rocuronium bromide — a commentary on clinical experience 15 month after introduction. Anaesth Pharamcol Rev 1995; 3: 188–91

    CAS  Google Scholar 

  128. Goldsmith AL, Scott RPF, Savarese JJ. The cardiovascular and autonomic effects of neuromuscular blocking agents. Sem Anesth 1994; 13: 331–44

    CAS  Google Scholar 

  129. Levy JH, Davis GK, Duggan J, et al. Determination of the hemodynamics and histamine release of rocuronium (Org 9426) when administered in increased doses under N2O/O2-sufentanil anesthesia. Anesth Analg 1994 Feb; 78: 318–21

    PubMed  CAS  Google Scholar 

  130. Maddineni VR, McCoy EP, Mirakur RK, et al. Onset and duration of action and hemodynamic effects of rocuronium bromide under balanced and volatile anesthesia. Acta Anaesthesiol Belg 1994; 45: 41–7

    PubMed  CAS  Google Scholar 

  131. McCoy EP, Maddineni VR, Elliott P, et al. Haemodynamic effects of rocuronium during fentanyl anaesthesia: comparison with vecuronium. Can J Anaesth 1993 Aug; 40: 703–8

    PubMed  CAS  Google Scholar 

  132. Stevens JB, Hecker RB, Talbot JC, et al. The haemodynamic effects of rocuronium and vecuronium are different under balanced anaesthesia. Acta Anaesthesiol Scand 1997 Apr; 41: 502–5

    PubMed  CAS  Google Scholar 

  133. Wierda JM, Schuringa M, van den Broek L. Cardiovascular effects of an intubating dose of rocuronium 0.6 mg kg-1 in anaesthetized patients, paralysed with vecuronium. Br J Anaesth 1997 May; 78: 586–7

    PubMed  CAS  Google Scholar 

  134. Hudson ME, Rothfield KP, Tullock WC, et al. Haemodynamic effects of rocuronium bromide in adult cardiac surgical patients. Can J Anaesth 1998 Feb; 45: 139–43

    PubMed  CAS  Google Scholar 

  135. Uyar M, Askar FZ, Demirag K. Elderly coronary artery bypass graft patients with left ventricular dysfunction are hemodynamically stable after two different doses of rocuronium. J Cardiothorac Vasc Anesth 1999 Dec; 13: 673–6

    PubMed  CAS  Google Scholar 

  136. Smith CE, Botero C, Holbrook C, et al. Rocuronium versus vecuronium during fentanyl induction in patients undergoing coronary artery surgery. J Cardiothorac Vasc Anesth 1999 Oct; 13: 567–73

    PubMed  CAS  Google Scholar 

  137. Harvey A, Anderson L, Broome IJ. A comparison of the effect of rocuronium and vecuronium on heart rate during gynaecological laparoscopy. Anaesthesia 1999 Dec; 54: 1212–6

    PubMed  CAS  Google Scholar 

  138. Naguib M, Samarkandi AH, Bakhamees HS, et al. Histamine-release haemodynamic changes produced by rocuronium, vecuronium, mivacurium, atracurium and tubocurarine. Br J Anaesth 1995 Nov; 75: 588–92

    PubMed  CAS  Google Scholar 

  139. Neal SM, Manthri PR, Gadiyar V, et al. Histaminoid reactions associated with rocuronium. Br J Anaesth 2000 Jan; 84: 108–11

    PubMed  CAS  Google Scholar 

  140. Shevchenko Y, Jocson JC, McRae VA, et al. The use of lidocaine for preventing the withdrawal associated with the injection of rocuronium in children and adolescents. Anesth Analg 1999 Apr; 88: 746–8

    PubMed  CAS  Google Scholar 

  141. Ruetsch YA, Borgeat A. Withdrawal movements associated with the injection of rocuronium. Anesth Analg 2000 Jan; 90: 227–8

    PubMed  CAS  Google Scholar 

  142. Steegers MA, Robertson EN. Pain on injection of rocuronium bromide. Anesth Analg 1996 Jul; 83: 203

    PubMed  CAS  Google Scholar 

  143. Borgeat A, Kwiatkowski D. Spontaneous movements associated with rocuronium: is pain on injection the cause? Br J Anaesth 1997 Sep; 79: 382–3

    PubMed  CAS  Google Scholar 

  144. Borgeat A, Kwiatkowski D, Ruetsch YA. Spontaneous movements associated with rocuronium injection: the effects of prior administration of fentanyl. J Clin Anesth 1997 Dec; 9: 650–2

    PubMed  CAS  Google Scholar 

  145. Cheong KF, Wong WH. Pain on injection of rocuronium: influence of two doses of lidocaine pretreatment. Br J Anaesth 2000 Jan; 84: 106–7

    PubMed  CAS  Google Scholar 

  146. Aziz L, Jahangir SM, Choudhury SN, et al. The effect of priming with vecuronium and rocuronium on young and elderly patients. Anesth Analg 1997 Sep; 85: 663–6

    PubMed  CAS  Google Scholar 

  147. Sieber TJ, Zbinden AM, Curatolo M, et al. Tracheal intubation with rocuronium using the ‘timing principle’. Anesth Analg 1998 May; 86: 1137–40

    PubMed  CAS  Google Scholar 

  148. van den Broek L, Wierda JM, Smeulers NJ, et al. Clinical pharmacology of rocuronium (Org 9426): study of the time course of action, dose requirement, reversibility, and pharmacokinetics. J Clin Anesth 1994 Jul; 6: 288–96

    PubMed  Google Scholar 

  149. Alvarez-Gomez JA, Estelles ME, Fabregat J, et al. Pharmacokinetics and pharmacodynamics of rocuronium bromide in adult patients. Eur J Anaesthesiol Suppl. 1994; 9: 53–6

    PubMed  CAS  Google Scholar 

  150. Cooper RA, Mirakhur RK, Wierda JM, et al. Pharmacokinetics of rocuronium bromide in patients with and without renal failure. Eur J Anaesthesiol Suppl. 1995 Sep; 11: 43–4

    PubMed  CAS  Google Scholar 

  151. Magorian T, Wood P, Caldwell J, et al. The pharmacokinetics and neuromuscular effects of rocuronium bromide in patients with liver disease. Anesth Analg 1995 Apr; 80: 754–9

    PubMed  CAS  Google Scholar 

  152. Tullock W, Freeman J, Kline B, et al. Low-dose rocuronium for prompt intubation and prompt recovery. Eur J Anaesthesiol 1997; 14: 12–3

    Google Scholar 

  153. Martin R, Carrier J, Pirlet M, et al. Rocuronium is the best non-depolarizing relaxant to prevent succinylcholine fasciculations and myalgia. Can J Anaesth 1998 Jun; 45: 521–5

    PubMed  CAS  Google Scholar 

  154. Maehr RB, Wastila W. Comparative pharmacology of atracurium and six isomers in cats. Anesthesiology 2000; 79: A950

    Google Scholar 

  155. Belmont MR, Lien CA, Quessy S, et al. The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995 May; 82: 1139–45

    PubMed  CAS  Google Scholar 

  156. Boyd AH, Eastwood NB, Parker CJ, et al. Pharmacodynamics of the 1R cis-1’R cis isomer of atracurium (51W89) in health and chronic renal failure. Br J Anaesth 1995 Apr; 74: 400–4

    PubMed  CAS  Google Scholar 

  157. Carroll MT, Mirakhur RK, Lowry DW, et al. Neuromuscular blocking effects and train-of-four fade with cisatracurium: comparison with other nondepolarising relaxants. Anaesthesia 1998 Dec; 53: 1169–73

    PubMed  CAS  Google Scholar 

  158. Mellinghoff H, Radbruch L, Diefenbach C, et al. A comparison of cisatracurium and atracurium: onset of neuromuscular block after bolus injection and recovery after subsequent infusion. Anesth Analg 1996 Nov; 83: 1072–5

    PubMed  CAS  Google Scholar 

  159. Savarese JJ, Caldwell JE, Lien CA, et al. Pharmacology of muscle relaxants and their antagonists. In: Miller RD, editor. Anesthesia. Philadelphia: Churchill Livingstone, 2000: 412–90

    Google Scholar 

  160. Stevens JB, Walker SC, Fontenot JP. The clinical neuromuscular pharmacology of cisatracurium versus vecuronium during outpatient anesthesia. Anesth Analg 1997 Dec; 85: 1278–83

    PubMed  CAS  Google Scholar 

  161. Puhringer FK, Scheller A, Kleinsasser A, et al. The effect of different priming doses on the pharmacodynamics of cisatracurium. Anaesthesist 2000 Feb; 49: 102–5

    PubMed  CAS  Google Scholar 

  162. Littlejohn IH, Abhay K, el Sayed A, et al. Intubating conditions following 1R CIS, 1’R CIS atracurium (51W89). A comparison with atracurium. Anaesthesia 1995 Jun; 50: 499–502

    PubMed  CAS  Google Scholar 

  163. Doenicke AW, Czeslick E, Moss J, et al. Onset time, endotracheal intubating conditions, and plasma histamine after cisatracurium and vecuronium administration. Anesth Analg 1998 Aug; 87: 434–8

    PubMed  CAS  Google Scholar 

  164. Rimaniol JM, Kersuzan Y, Duvaldestin P. Intubating conditions using cisatracurium after induction of anaesthesia with thiopentone. Anaesthesia 1997 Oct; 52: 998–1008

    PubMed  CAS  Google Scholar 

  165. Hughes R, Chappie DJ. The pharmacology of atracurium: a new competitive neuromuscular blocking agent. Br J Anaesth 1981 Jan; 53: 31–44

    PubMed  CAS  Google Scholar 

  166. Hunter JM. New neuromuscular blocking drugs. N Engl J Med 1995 Jun; 332: 1691–9

    PubMed  CAS  Google Scholar 

  167. Basta SJ, Savarese JJ, Ali HH, et al. Histamine-releasing potencies of atracurium, dimethyl tubocurarine and tubocurarine. Br J Anaesth 1983; 55 Suppl. 1: 105S–6S

    PubMed  Google Scholar 

  168. Goudsouzian NG, Young ET, Moss J, et al. Histamine release during the administration of atracurium or vecuronium in children. Br J Anaesth 1986 Nov; 58: 1229–33

    PubMed  CAS  Google Scholar 

  169. Lavery GG, Mirakhur RK, Clarke RS, et al. The effect of atracurium, vecuronium and pancuronium on heart rate and arterial pressure in normal individuals. Eur J Anaesthesiol 1986 Nov; 3: 459–67

    PubMed  CAS  Google Scholar 

  170. Fuchs-Buder T. New muscle relaxants. Update on mivacurium, rocuronium and cis-atracurium. Anaesthesist 1997 Apr; 46: 350–9

    PubMed  CAS  Google Scholar 

  171. Kisor DF, Schmith VD. Clinical pharmacokinetics of cisatracurium besilate. Clin Pharmacokinet 1999 Jan; 36: 27–40

    PubMed  CAS  Google Scholar 

  172. Lien CA, Belmont MR, Abalos A, et al. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995 May; 82: 1131–8

    PubMed  CAS  Google Scholar 

  173. Schramm WM, Papousek A, Michalek-Sauberer A, et al. The cerebral and cardiovascular effects of cisatracurium and atracurium in neurosurgical patients. Anesth Analg 1998 Jan; 86: 123–7

    PubMed  CAS  Google Scholar 

  174. Eddleston JM, Harper NJ, Pollard BJ, et al. Concentrations of atracurium and laudanosine in cerebrospinal fluid and plasma during intracranial surgery. Br J Anaesth 1989 Nov; 63: 525–30

    PubMed  CAS  Google Scholar 

  175. Fahey MR, Rupp SM, Canfell C, et al. Effect of renal failure on laudanosine excretion in man. Br J Anaesth 1985 Nov; 57: 1049–51

    PubMed  CAS  Google Scholar 

  176. Pittet JF, Tassonyi E, Schopfer C, et al. Plasma concentrations of laudanosine, but not of atracurium, are increased during the anhepatic phase of orthotopic liver transplantation in pigs. Anesthesiology 1990 Jan; 72: 145–52

    PubMed  CAS  Google Scholar 

  177. Gwinnutt CL, Eddleston JM, Edwards D, et al. Concentrations of atracurium and laudanosine in cerebrospinal fluid and plasma in three intensive care patients. Br J Anaesth 1990 Dec; 65: 829–32

    PubMed  CAS  Google Scholar 

  178. Beemer GH, Dawson PJ, Bjorksten AR, et al. Early postoperative seizures in neurosurgical patients administered atracurium and isoflurane. Anaesth Intensive Care 1989 Nov; 17: 504–9

    PubMed  CAS  Google Scholar 

  179. Eastwood NB, Boyd AH, Parker CJ, et al. Pharmacokinetics of 1R-cis 1’R-cis atracurium besylate (51W89) and plasma laudanosine concentrations in health and chronic renal failure. Br J Anaesth 1995 Oct; 75: 431–5

    PubMed  CAS  Google Scholar 

  180. Smith CE, van Miert MM, Parker CJ, et al. A comparison of the infusion pharmacokinetics and pharmacodynamics of cisatracurium, the 1R-cis 1’R-cis isomer of atracurium, with atracurium besylate in healthy patients. Anaesthesia 1997 Sep; 52: 833–41

    PubMed  CAS  Google Scholar 

  181. Welch RM, Brown A, Ravitch J, et al. The in vitro degradation of cisatracurium, the R, cis-R’ -isomer of atracurium, in human and rat plasma. Clin Pharmacol Ther 1995 Aug; 58: 132–42

    PubMed  CAS  Google Scholar 

  182. Atherton DP, Hunter JM. Clinical pharmacokinetics of the newer neuromuscular blocking drugs. Clin Pharmacokinet 1999 Mar; 36: 169–89

    PubMed  CAS  Google Scholar 

  183. De Wolf AM, Freeman JA, Scott VL, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in patients with end-stage liver disease undergoing liver transplantation. Br J Anaesth 1996 May; 76: 624–8

    PubMed  Google Scholar 

  184. Sorooshian SS, Stafford MA, Eastwood NB, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in young and elderly adult patients. Anesthesiology 1996 May; 84: 1083–91

    PubMed  CAS  Google Scholar 

  185. Carroll MT, Mirakhur RK, Lowry D, et al. A comparison of the neuromuscular blocking effects and reversibility of cisatracurium and atracurium. Anaesthesia 1998 Aug; 53: 744–8

    PubMed  CAS  Google Scholar 

  186. Ornstein E, Lien CA, Matteo RS, et al. Pharmacodynamics and pharmacokinetics of cisatracurium in geriatric surgical patients. Anesthesiology 1996 Mar; 84: 520–5

    PubMed  CAS  Google Scholar 

  187. Boyd AH, Eastwood NB, Parker CJ, et al. Comparison of the pharmacodynamics and pharmacokinetics of an infusion of cis-atracurium (51W89) or atracurium in critically ill patients undergoing mechanical ventilation in an intensive therapy unit. Br J Anaesth 1996 Mar; 76: 382–8

    PubMed  CAS  Google Scholar 

  188. Brandom BW, Westman HR. Effects of 0.86 mg/kg cisatracurium in an infant. Anesthesiology 1996 Sep; 85: 688–9

    PubMed  CAS  Google Scholar 

  189. Brandom BW, Woelfel SK, Ference A, et al. Effects of cisatracurium in children during halothane-nitrous oxide anesthesia. J Clin Anesth 1998 May; 10: 195–9

    PubMed  CAS  Google Scholar 

  190. Meretoja OA, Taivainen T, Wirtavuori K. Pharmacodynamic effects of 51W89, an isomer of atracurium, in children during halothane anaesthesia. Br J Anaesth 1995 Jan; 74: 6–11

    PubMed  CAS  Google Scholar 

  191. Meretoja OA, Taivainen T, Wirtavuori K. Cisatracurium during halothane and balanced anaesthesia in children. Paediatr Anaesth 1996; 6: 373–8

    PubMed  CAS  Google Scholar 

  192. Taivainen T, Meakin GH, Meretoja OA, et al. The safety and efficacy of cisatracurium 0.15 mg.kg−1 during nitrous oxide-opioid anaesthesia in infants and children. Anaesthesia 2000 Nov; 55: 1047–51

    PubMed  CAS  Google Scholar 

  193. Prielipp RC, Coursin DB, Scuderi PE, et al. Comparison of the infusion requirements and recovery profiles of vecuronium and cisatracurium 51W89 in intensive care unit patients. Anesth Analg 1995 Jul; 81: 3–12

    PubMed  CAS  Google Scholar 

  194. Davis NA, Rodgers JE, Gonzalez ER, et al. Prolonged weakness after cisatracurium infusion: a case report. Crit Care Med 1998 Jul; 26: 1290–2

    PubMed  CAS  Google Scholar 

  195. Kron, SS. Severe bronchospasm and desaturation in a child associated with rapacuronium. Anesthesiology 2001 May; 94(5): 923

    PubMed  CAS  Google Scholar 

  196. Naguib M. How serious is the bronchospasm induced by rapacuronium? Anesthesiology 2001 May; 94(5): 924

    PubMed  CAS  Google Scholar 

  197. Meakin GH, Pronske EH, Leman J, et al. Bronchospasm after rocuronium in infants and children. Anesthesiology 2001 May; 94(5): 926

    PubMed  CAS  Google Scholar 

  198. Nishan G, Goudsouzian NG. Rapacuronium and bronchospasm [editorial]. Anesthesiology 2001 May; 94(5): 727

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald J. Sparr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparr, H.J., Beaufort, T.M. & Fuchs-Buder, T. Newer Neuromuscular Blocking Agents. Drugs 61, 919–942 (2001). https://doi.org/10.2165/00003495-200161070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161070-00003

Keywords

Navigation