Cortical processing of swallowing in ALS patients with progressive dysphagia--a magnetoencephalographic study

PLoS One. 2011;6(5):e19987. doi: 10.1371/journal.pone.0019987. Epub 2011 May 20.

Abstract

Amyotrophic lateral sclerosis (ALS) is a rare disease causing degeneration of the upper and lower motor neuron. Involvement of the bulbar motor neurons often results in fast progressive dysphagia. While cortical compensation of dysphagia has been previously shown in stroke patients, this topic has not been addressed in patients suffering from ALS. In the present study, we investigated cortical activation during deglutition in two groups of ALS patients with either moderate or severe dysphagia. Whole-head MEG was employed on fourteen patients with sporadic ALS using a self-paced swallowing paradigm. Data were analyzed by means of time-frequency analysis and synthetic aperture magnetometry (SAM). Group analysis of individual SAM data was performed using a permutation test. We found a reduction of cortical swallowing related activation in ALS patients compared to healthy controls. Additionally a disease-related shift of hemispheric lateralization was observed. While healthy subjects showed bilateral cortical activation, the right sensorimotor cortex was predominantly involved in ALS patients. Both effects were even stronger in the group of patients with severe dysphagia. Our results suggest that bilateral degeneration of the upper motor neuron in the primary motor areas also impairs further adjusted motor areas, which leads to a strong reduction of 'swallowing related' cortical activation. While both hemispheres are affected by the degeneration a relatively stronger activation is seen in the right hemisphere. This right hemispheric lateralization of volitional swallowing observed in this study may be the only sign of cortical plasticity in dysphagic ALS patients. It may demonstrate compensational mechanisms in the right hemisphere which is known to predominantly coordinate the pharyngeal phase of deglutition. These results add new aspects to our understanding of the pathophysiology of dysphagia in ALS patients and beyond. The compensational mechanisms observed could be relevant for future research in swallowing therapies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / physiopathology*
  • Deglutition Disorders / physiopathology*
  • Deglutition*
  • Disease Progression
  • Humans
  • Magnetoencephalography*